博碩士論文 982206602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:35.153.135.60
姓名 雲大賢(Tanant Waritanant)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器
(Study of Non-Tracking Thin Profile Solar Concentrators Designed Using Wedge Prisms and Diffractive Gratings)
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究★ 穩態紅外線LED封裝熱阻量測
★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究★ 鎖相熱影像檢測法用以檢測材料內部缺陷
★ 光聲影像顯微術之研究★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬
★ 基於純量繞射理論以遠場聲場重建光聲影像之研究★ 基於光聲訊號之三維資訊重建
★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究★ 紅外線穩態熱阻量測法之石墨層影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討利用非光線追跡設計太陽能電池集光器,本設計包含楔形棱鏡、繞射光柵、與體積小等。利用模擬演算法證明此實驗結果與給出此條件與參考數據。
模擬發現此設計太陽能電池集光器,波長可接收範圍在500 nm以上。太陽能集光器的長度與厚度的比例可以超過7,輸入單位面積強度與輸出單位面積強度比值超過3.7,二維的角度容忍度可達到 ±53 °和±13 °。
摘要(英) This thesis explores non-tracking thin profile solar concentrator designs that comprised of a wedge prism and diffractive gratings and their geometrical limitations. Full explanation of the simulation algorithm used to simulate the results in this thesis is also given.
The simulation result of the last design shows that a concentrated broad solar spectrum of up to 500 nm can be achieved by utilizing two diffractive gratings. One blazed transmission grating located on the top and another blazed reflection grating placed below bottom surfaces of the wedge prism. The gratings diffract the incident light guiding it into the wedge prism. The guided light is then projected onto the solar module located at the end face of the prism. With this coupling mechanism, the concentrator’s length-to-thickness ratio can exceed 7, the maximum concentration ratio exceeds 3.7, and angular tolerance can reach ±53° and ±9° in the two planes of incidence. In addition, the polarization dependence, as a property of the one-dimensional diffractive grating, is suppressed.
關鍵字(中) ★ 踏陽能集光器
★ 光柵
★ 楔形稜鏡
關鍵字(英) ★ Wedge prism
★ Grating
★ Solar concentrator
論文目次 Table of contents
中文摘要.................................................................................................................................................... IV
Abstract V
Table of contents VI
List of figures VIII
List of tables X
Chapter 1 Introduction - 1 -
1.1 Solar concentrators for Photovoltaic application - 1 -
1.2 Fundamentals - 4 -
1.2.1 Wedge Prisms - 4 -
1.2.2 Blazed gratings - 5 -
1.3 Geometrical limitations - 7 -
1.3.1 Simple wedge design - 8 -
1.3.2 Wedge prism with sawtooth-profile mirror - 8 -
Chapter 2 Simulation tools - 10 -
2.1 Rigorous coupled-wave analysis (RCWA) of one-dimensional grating - 10 -
2.2 Simple Ray tracing - 14 -
2.3 Details of the simulation process - 14 -
Chapter 3 Designs & Results - 16 -
3.1 Geometrical limitation cases - 16 -
3.1.1 Simple wedge - 16 -
3.1.2 Wedge with sawtooth profile mirror - 18 -
3.2 Initial design concept - 19 -
3.3 Single wedge prism design with reflection grating - 20 -
3.3.1 Acceptance angle - 20 -
3.3.2 Collection efficiency spectrum - 21 -
3.3.3 Change in collection efficiency due to the change in design parameters - 22 -
3.4 Double wedge prism design with reflection grating - 30 -
3.4.1 Acceptance angle - 30 -
3.4.2 Collection efficiency spectrum - 31 -
3.4.3 Change in collection efficiency due to the change in design parameters - 32 -
3.5 Single wedge prism design with reflection and transmission grating - 42 -
3.5.1 Acceptance angles - 42 -
3.5.2 Governing equations - 43 -
3.5.3 Simulation results - 44 -
3.5.4 Output characteristic - 48 -
Chapter 4 Discussion - 52 -
4.1 Experimental verification of the simulation - 52 -
4.2 Comparison of collection efficiencies and concentration ratios - 54 -
4.3 Output profile & further concentration ratio enhancing possibility - 54 -
Chapter 5 Conclusion - 58 -
References - 59 -
Appendix - 61 -
參考文獻 [1] Würfel P., [Physics of Solar Cells: From Principles to New Concepts], Wiley-VCH, Darmstadt, Chapter 8 (2005).
[2] J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Applied Optics, Vol. 49, Issue 5, pp. 858-870 (2010).
[3] Lee C.-Y., Chou P.-C., Chiang C.-M., Lin C.-F. Sun Tracking Systems: A Review. Sensors. (2009).
[4] C. M. Wang, H. I. Huang, J. W. Pan, H. Z. Kuo, H. F. Hong, H. Y. Shin, and J. Y. Chang, “Single stage transmission type broadband solar concentrator,” Optics Express, Vol. 18, Issue S2, pp. A118-A125 (2010).
[5] Y. Shuai, X. L. Xia, and H. P. Tan, “Radiation performance of dish solar concentrator/cavity receiver systems,” Solar Energy, Volume, 82, Issue 1 (2008).
[6] J. J. O'Gallagher, R. Winston, and R. Gee, "Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays", Proc. SPIE 4446, 60 (2001).
[7] T. Maruyama and S. Osako, “Wedge-shaped light concentrator using total internal reflection,” Solar Energy Materals& Solar Cells 57, 75-83 (1999).
[8] R. K. Kostuk, J. Castro, B. Myer, D. Zhang and G. Rosenberg, “Holographic Elements in Solar Concentrator and Collection Systems,” Proc. of SPIE Vol. 7407, 74070E (2009).
[9] R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[10] J. H. Karp, E. J. Tremblay, and J. E. Ford, “ Planar micro-optics solar concentrator,” Opt. Express 18, 1122-1133 (2010).
[11] M. Park, K. Oh, J. Kim, H. W. Shin, and B. D. Oh, “ A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell,” Opt. Express 18, 1777-1787 (2010).
[12] T. Waritanant, S. Boonruang and T. Y. Chung, "A study of thin profile solar concentrators using wedge prism with diffractive grating," Proc. SPIE 7652, 76521J (2010)
[13] M. G. Moharam, Eric B. Grann, Drew A. Pommet, and T.K.Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A/Vol.12,No.5 (1995).
[14] M. G. Moharam, D. A. Pommet, E. B. Grann, and T.K.Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” Vol. 12, No. 5, J. Opt. Soc. Am. A (1995).
[15] Research note of Dr. SakoolkanBoonruang, “Rigorous coupled-wave analysis of planar diffraction (RCWA of 1D-grating)," (2007).
指導教授 鍾德元(Te-yuan chung) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明