博碩士論文 982212004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.148.102.90
姓名 李建勳(Chien-hsun Lee)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 圖案化二氧化矽奈米柱結構應用於氮化鎵發光二極體之研究
(Efficiency enhancement of GaN-based Light Emitting Diode prepared on SiO2 nanorod patterned GaN template)
相關論文
★ 紫外光發光二極體製程技術與元件特性研究★ 網狀電極應用在氮化物紫外光光偵測器之研究
★ 不同電流阻障層對氮化鎵發光二極體之光電特性研究★ 具網狀結構之紫外光發光二極體之特性研究
★ 氧化鋅鎵之透明導電薄膜材料特性與其應用在氮化鎵發光二極體上之研究★ 以有機金屬化學氣相沉積法成長氮化物藍光發光二極體與其光電特性研究
★ 氮化鎵薄膜成長於奈米級圖樣化氮化鎵基板之研究★ 氧化鋅鋁透明導電薄膜的熱穩定性於氮化鎵藍色發光二極體之研究
★ 氮化物藍光發光二極體及太陽能電池之光電特性研究★ 具有倒金字塔側壁之氮化鎵發光二極體的製作
★ 應用氮化鎵奈米柱基板提升氮化鎵發光二極體之電流擴散★ 利用陽極氧化法製備奈米結構圖案化藍寶石基板之研究
★ 二氧化矽奈米柱結構應用於氮化銦鎵太陽能電池元件之研究★ 以氫化物氣相磊晶法成長氮化鎵厚膜於氮化鎵奈米柱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究以有機金屬氣相沉積機台(Organometallic Vapor Phase Epitaxy, OMVPE)成長氮化鎵發光二極體於微米與奈米尺度的圖案化二氧化矽於氮化鎵薄膜/藍寶石基板。實驗中探討微米與奈米尺度的圖案化二氧化矽對氮化鎵發光二極體的影響,因基板運用磊晶側向成長技術(Epitaxial Lateral Overgrowth;ELOG),將能降低缺陷密度,且圖案化二氧化矽結構包覆於氮化鎵薄膜中,而二氧化矽之幾何結構與折射率的差異,增加了光被散射的機率,更進一步因奈米級圖樣化二氧化矽相較於微米級圖樣化二氧化矽有著較多的光散射中心,增強了發光二極體之光萃取率。
成長氮化鎵發光二極體在微米與奈米級圖樣化二氧化矽排列於氮化鎵薄膜(un-doped GaN )/藍寶石基板,以及氮化鎵薄膜(un-doped GaN )/藍寶石基板為實驗對照組。由光電特性量測結果顯示出,在操作電流 20 mA注入下,各自具有大約相同的順向偏壓3.4V,實驗對照組LED C1、微米級LED M1、奈米級LED N1的光輸出功率分別為3.53mW、4.37mW、5.02mW,而光輸出功率LED M1 與LED N1 相對於LED C1 元件各提升23 與42 %。
在二維光強度影像量測中,操作電流 100 mA注入下,可觀察到具有奈米與微米級圖樣化二氧化矽排列於氮化鎵薄膜/藍寶石基板皆優於氮化鎵薄膜/藍寶石基板。且光學顯微鏡下拍攝到氮化鎵發光二極體之奈米與微米級之條狀圖樣化二氧化矽排列形貌,呼應於二維光強度影像分佈,驗證了氮化鎵發光二極體基板上的圖案會增加光的折射和反射會提升元件的光取出效率。為了釐清光輸出功率的提高,以有限時域差分法(FDTD)分析模擬,研究光線在發光二極體的散射路徑。
摘要(英) GaN have emerged as important semiconductor materials for light-emitting diodes (LEDs). However, It was well known that light-extraction efficiency (LEE) of LED is limited mainly by the large difference in refractive index between GaN film and the surrounding air. Since the refractive indexes of GaN and the air are 2.5 and 1. Critical angle is crucially important for the light extraction efficiency of LEDs. It has been shown that one can enhance light output by light scattering layer (e.g., patterned substrate.), photons generated in the active layer will have multiple opportunities to find the escape cone.
In the study, the LED device with the embedded micro-size SiO2 stripe was fabricated. We labeled the LED as LED M1. In order to clarify the light scattering in different scale, we fabricate the LED device with the embedded nano-size SiO2 nanorods stripe. We labeled the LED as LED N1. For comparison, convention LED was also prepared, we labeled as LED C1.
With 20 mA current injection, it was found that output power of LED C1, LED M1 and LED N1 was 3.15mW, 4.37 mW, and 5.07 mW, respectively. To clarify the enhancement in light output power, the finite-difference time-domain (FDTD) analysis is used to study the irradiance behavior of the proposed LED with SiO2 patterned structure. Shows the simulated light emission of proposed LED with SiO2 patterned structure. We can found in this figure, the photon density in nano-size structure was larger than micro-size structure. The result shows that nano sized structure could provide more light scattering center than micro size structure.
In conclusion, we can enhance the 20 mA LED output power by 42% from the LED N1 compared with the conventional LED. The increasing of light scattering centers could reduce the probability of photons restricted in GaN epitaxial layers.
關鍵字(中) ★ 氮化鎵
★ 二氧化矽奈米結構
★ 發光二極體
關鍵字(英) ★ GaN
★ LED
★ SiO2 nanorod patterned
論文目次 摘要 ................................................... Ⅰ
Abstract ............................................... Ⅲ
致謝 ................................................... Ⅳ
目錄 ................................................... Ⅴ
圖目錄 ................................................. Ⅷ
表目錄 ................................................. Ⅹ
第一章 序論 ............................................. 1
第二章 實驗原理與量測系統 ............................... 4
2.1 實驗原理 .......................................... 4
2.1.1 圖案化基板對氮化鎵磊晶成長之影響 .............. 4
2.1.2 圖案化基板對光散射之影響 ...................... 7
2.2 量測系統 .......................................... 8
2.2.1 掃描電子顯微鏡(SEM) ........................... 8
2.2.2 X-ray 繞射儀 .................................. 8
2.2.3 原子顯微鏡量測系統 ............................ 9
2.2.4電流-電壓量測系統............................... 9
2.2.5 積分球量測系統 ............................... 10
2.2.6 二維光強度影像量測系統 ....................... 10
第三章 實驗製程方法與步驟 .............................. 11
3.1 圖案化二氧化矽於氮化鎵基板之製程 ................. 11
3.1.1 二氧化矽條狀化排列於氮化鎵基板製程 ........... 11
3.1.2 二氧化矽奈米柱條狀化排列於氮化鎵基板製程 ..... 13
3.2 氮化鎵發光二極體元件之製程 ....................... 16
第四章 氮化鎵薄膜之材料分析 ............................ 20
4.1 氮化鎵薄膜之電子式掃描顯微鏡量測分析 ............. 21
4.2 氮化鎵薄膜之 X-ray 繞射儀量測分析 ................ 22
4.3 氮化鎵薄膜之單位面積缺陷密度量測分析 ............. 23
4.4 結論與分析 ....................................... 24
第五章 氮化鎵發光二極體元件之比較分析................... 26
5.1 氮化鎵發光二極體元件成長於奈米與微米等級圖樣化二氧化矽排列於氮化鎵薄膜/藍寶石基板之比較分析................. 27
5.1.1氮化鎵發光二極體元件之電流-電壓量測分析........ 27
5.1.2氮化鎵發光二極體元件之二維影像量測分析......... 28
5.1.3氮化鎵發光二極體元件之光輸出功率-電壓量測分析.. 29
5.1.4氮化鎵發光二極體元件之模擬分析................. 30
5.1.5結論與分析 .................................... 31
5.2 改變二氧化矽密度對氮化鎵發光二極體元件之光電特性研究.......................................................32
5.2.1 改變二氧化矽密度對發光二極體元件之光輸出功率量測分析.................................................... 32
第六章 結論與未來工作 .................................. 33
6.1 結論 ............................................. 33
6.2 未來工作 ......................................... 34
參考文獻 ............................................... 35
參考文獻 [1] E. F. Schubert, J. K. Kim, H. Luo, and J.-Q. Xi C"Solid-state lighting - A benevolent technology," Rep. Prog. Phys. 69, 3069-3098 (2006).
[2] S.J. Pearton, J.C. Zolper, R.J.Shul, F. Ren, "GaN: Processing, defects, and devices", J. Appl. Phys.68, 1,(1999).
[3] E.Fred Schubert, Light-emitting diodes, second edition, p.88~93.
[4] Ok-Hyun Nam, Michael D. Bremser, Tsvetanka S. Zheleva, and RobertF.Davis, Appl. Phys. Lett. 71 (18), 3 November (1997).
[5] 1TSVETANKA S. ZHELEVA, SCOTT A. SMITH,DARREN B.THOMSON,KEVIN J. LINTHICUM, PRADEEP RAJAGOPAL, and ROBERT F. DAVIS , Journal of Electronic Materials, Vol. 28, No. 4,(1999).
[6] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin, Appl. Phys. Lett. 89, 161105 (2006).
[7] Dong-Hun KANG, Jae-Chul SONG, Byung-Young SHIM, Eun-A KO,Dong-Wook KIM , Santhakumar KANNAPPAN, and Cheul-Ro LEE, Jpn. J. Appl. Phys. Vol. 46, No. 4B, pp. 2563–2566 (2007).
[8] Tae Su OH, Seung Hwan KIM, Tae Ki KIM, Yong Seok LEE, Hyun JEONG, Gye Mo YANG, and Eun-Kyung SUH, Jpn. J. Appl. Phys. Vol. 47, No.7, pp.5333–5336(2008).
[9] Haiyong Gao, Fawang Yan, Yang Zhang, Jinmin Li, Yiping Zeng, and Guohong Wang, Appl. Phys. Lett. 93, 081108 (2008).
[10] Walter Schottky Institute, Technical University Munich, Am Coulombwall, D-85748 Garching, Appl. Phys. Lett. 83,112325 (1998).
[11] C. H. Kuo, L. C. Chang, C. W. Kuo, and G. C. Chi, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 4, FEBRUARY 15, (2010).
[12] E. Fred Schubert, Light-emitting diodes, second edition, p.133~p.138
[13] B. Beaumont, Ph. Venne′gue`s, and P. Gibart1) phys. stat.sol. (b) 227, No. 1, p.1–43 (2001).
[14] Pierre Gibart . Rep. Prog. Phys. 67 p.667–715 (2004).
[15] D. S. Wuu et al. Appl. Phys. Lett. 89, 161105 (2006).
[16] Z. Huang, C. C. Lin, and D. G. Deppe, pontaneous Lifetime and Quantum Efficiency in Light Emitting Diode Affected by a Close Metal Mirror. IEEE Journal of Quantum Electronics, Vol.29. No. 12. December (1993).
[17] M.L. Wu, Y.C. Lee, P.S. Lee, C.H. Kuo, J.Y. Chang, Jpn. J. Appl. Phys. Lett., vol. 47, no. 8, pp. 6757–6759,(2008).
[18] W.C. Lai, Y.Y. Yang, L.C. Peng, S.W. Yang, Y.R. Lin, J.K. Sheu, Appl. Phys. Lett. 97, 081103, (2010).
[19] E. Fred Schubert, Light-emitting diodes, second edition, p.91~p.93.
[20] T. Fujii et al. Appl. Phys. Lett. Vol.84, No.6, pp.855,(2004).
[21] R. H. Horng et al. Jpn, J. Appl. Phys., Vol.43, No.5A,pp.2510, (2004).
[22] Y. J. Lee et al. JOURNAL OF DISPLAY TECHNOLOGY, VOL. 3,NO. 2, (2007).
[23] W.K. Wang, et al. IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL.41, NO. 11,(2005).
指導教授 郭政煌(Cheng-Huang Kuo) 審核日期 2011-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明