博碩士論文 982213006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.204.56.104
姓名 陳冠丞(Guan-cheng Chen)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 不同微陣列預處理方法以及即時聚合酶鏈鎖反應之微陣列基因表現量比較
(Comparison of gene expression measurement by microarray using different preprocessing methods and Real-Time PCR)
相關論文
★ 細菌物種基因體中非編碼小片段核糖核酸之預測★ 從年齡動態網路探討疾病盛行率
★ 藉由比較基因表現資料研究次世代定序與晶片技術分析差異★ 啟動子甲基化與對應之基因表現微陣列資訊整合分析
★ 乾燥綜合症與非病毒型肝炎之相關因子分析★ 氣候變遷對人類疾病網路造成衝擊
★ 台北和中壢地區不孕症分佈與共病探討★ 探討台灣的門診疾病與環境空氣品質的濃度變化之相關性
★ 使用支持向量機預測蛋白質醣基化位置★ 使用基因表現資料預測基因轉錄調控網路
★ RNA Riboswitch搜尋系統之設計與實作★ 人類疾病差異表現基因與調控網路之整合系統
★ 利用赫伯特-黃轉換法辨識酵母菌在呼吸/還原週期中的震盪基因群★ 運用高通量基因微矩陣列方法解析由嗜鉻 細胞分化成神經細胞之全基因體的調控
★ 利用赫伯特-黃轉換法做為在質譜儀分析技術的前處理方法★ 從年齡動態網路探討疾病表現與疾病盛行率
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 基因表現量的觀察和分析一直是一件很重要的課題。基因表現量有許多方法和技術可以測量,而微陣列技術因為其高通量和相對低成本的優點,近年來已廣泛的被使用於測量基因表現量。但是不同的微陣列預處理方法得到的基因表現量會有差異。這些差異可能會造成選擇上的困惑。所以我們做了一個分析研究,以即時聚合酶鏈鎖反應方法測量到的基因表現量為準,用來比較不同的微陣列分析流程/方法之間的差異。
摘要(英) Observation and analysis of gene expression are very important issues. There are many different methods and technologies to measure gene expression. Recently, the microarray technology has been widely used to measure gene expression because of its high-throughput data and relative low cost. But gene expression measured by different preprocessing methods of microarray may be variant. The difference between preprocessing methods may confuse scientists. So, we assume the gene expression measured by real-time polymerase chain reaction methods as a standard expression to compare gene expression measurement by microarray using different preprocessing methods.
關鍵字(中) ★ 微陣列
★ 預處理方法
★ 即時聚合酶鏈鎖反應
★ 基因表現量
關鍵字(英) ★ gene expression measurement
★ microarray
★ preprocessing methods
★ Real-Time PCR
論文目次 Table of Contents
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Gene expression 1
1.1.2 Microarray 2
1.1.3 Real-time PCR 5
1.2 Motivation 6
1.3 Goal 7
Chapter 2 Material and methods 8
2.1 Materials 8
2.1.1 Microarray and real-time PCR data for the same sample 8
2.1.2 Chip description file 9
2.2 Methods 10
2.2.1 Description of Affymetrix probe set 11
2.2.2 Normalization 12
2.2.3 Combining probe-level signals into gene 13
2.2.4 Statistical measurement 14
Chaper 3 Result 18
3.1 Dataset 1: GSE11812 18
3.2 Dataset 2: GSE7670 24
References 30
Appendix 32
參考文獻 1. Alwine, J.C., D.J. Kemp, and G.R. Stark, Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5350-4.
2. Kevil, C.G., et al., An improved, rapid Northern protocol. Biochem Biophys Res Commun, 1997. 238(2): p. 277-9.
3. Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995. 270(5235): p. 467-70.
4. Wilhelm, J. and A. Pingoud, Real-time polymerase chain reaction. Chembiochem, 2003. 4(11): p. 1120-8.
5. Mardis, E.R., Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet, 2008. 9: p. 387-402.
6. wikipedia. DNA microarray. Available from: http://en.wikipedia.org/wiki/DNA_microarray.
7. Allison, D.B., et al., Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet, 2006. 7(1): p. 55-65.
8. Affymetrix. Available from: http://www.affymetrix.com/index.affx.
9. 林榮耀等, 特定標的之新藥開發. 2005, 臺北市: 教育部生技人才醫藥基因中心.
10. Reimers, M. An (opinionated) Guide to Microarray Data Analysis Available from: http://www.bea.ki.se/affymetrix/microarray_guide.pdf.
11. AffymetrixR Expression Console™ software Version 1.0 — User Guide.
12. Bartlett, J.M. and D. Stirling, A short history of the polymerase chain reaction. Methods Mol Biol, 2003. 226: p. 3-6.
13. Valasek, M.A. and J.J. Repa, The power of real-time PCR. Adv Physiol Educ, 2005. 29(3): p. 151-9.
14. AppliedBiosystems. Real-Time PCR vs Traditional PCR. Available from: http://www6.appliedbiosystems.com/support/tutorials/pdf/rtpcr_vs_tradpcr.pdf.
15. AppliedBiosystems. TaqManR and SYBRR Green Chemistries. Available from: http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/real-time-pcr/taqman-and-sybr-green-chemistries.html.
16. Quellhorst, G., Y. Han, and R. Blanchard, Validating Microarray Data Using RT2 Real-Time™ PCR, in SABiosciences. 2005.
17. Etienne, W., et al., Comparison of mRNA gene expression by RT-PCR and DNA microarray. Biotechniques, 2004. 36(4): p. 618-20, 622, 624-6.
18. Morey, J.S., J.C. Ryan, and F.M. Van Dolah, Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online, 2006. 8: p. 175-93.
19. Desai, V.G., et al., Development of mitochondria-specific mouse oligonucleotide microarray and validation of data by real-time PCR. Mitochondrion, 2007. 7(5): p. 322-9.
20. Khodakov, D.A., et al., An oligonucleotide microarray for multiplex real-time PCR identification of HIV-1, HBV, and HCV. Biotechniques, 2008. 44(2): p. 241-6, 248.
21. Syudo, M., et al., Early gene expression analyzed by a genome microarray and real-time PCR in osteoblasts cultured with a 4-META/MMA-TBB adhesive resin sealer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009. 107(3): p. e77-81.
22. Su, L.J., et al. Redefinition of Affymetrix probe setd for gene expression measurements. in The Seventh Cross-Strait Workshop on Biology Inspired Theoretical Science (BITS 7). 2010. No.1, University Road, Tainan City 701, Taiwan (R.O.C.)
23. Gyorffy, B., et al., Evaluation of microarray preprocessing algorithms based on concordance with RT-PCR in clinical samples. PLoS One, 2009. 4(5): p. e5645.
24. Su, L.J., et al., Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC Genomics, 2007. 8: p. 140.
25. Bioconductor. Available from: http://www.bioconductor.org/index.html.
26. Irizarry, R.A., et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 2003. 4(2): p. 249-64.
27. Affymetrix. Plier technote. 2008; Available from: http://media.affymetrix.com/support/technical/technotes/plier_technote.pdf.
28. Hubbell, E., W.M. Liu, and R. Mei, Robust estimators for expression analysis. Bioinformatics, 2002. 18(12): p. 1585-92.
29. Wu, Z. and R.A. Irizarry, Stochastic models inspired by hybridization theory for short oligonucleotide arrays. J Comput Biol, 2005. 12(6): p. 882-93.
30. Hochreiter, S., D.A. Clevert, and K. Obermayer, A new summarization method for Affymetrix probe level data. Bioinformatics, 2006. 22(8): p. 943-9.
31. Huber, W., et al., Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 2002. 18 Suppl 1: p. S96-104.
指導教授 吳立青(Li-ching Wu) 審核日期 2011-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明