博碩士論文 982402009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.145.47.253
姓名 雍敦元(Tung-Yuan YUNG)  查詢紙本館藏   畢業系所 物理學系
論文名稱 石墨烯奈米複合材料電化學觸媒應用
(Graphene Nanocompasites for Electrocatalysis Applications)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析★ 以脈衝雷射沈積製造FeBO3薄膜
★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用★ 以光激發黑色素來清除細胞環境中之活性氧之探討
★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷
★ 發展利用另一道脈衝雷射在脈衝雷射沉 積技術中成長碳薄膜的雷射同步過程進 行碳薄膜晶向之控制★ 研究以雷射進行基板之前置處理來達到控制脈衝雷射沉積的矽鍺量子點的尺寸分布的可行性
★ 以超短脈衝雷射沉積技術製作鍺/矽薄膜之研究★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 以基質輔助脈衝雷射蒸鍍法製備聚3-己基噻酚/(6,6)-苯基-C61-丁酸甲酯有機太陽能電池★ 藥物劑量與復原時間影響光動力療法疫苗之功效的系統性研究
★ 光控制實用的材料製程在PEM燃料電池及光電元件上的應用★ 以脈衝雷射沉積與脈衝雷射退火製造鍺/矽量子點與成長鍺薄膜於單晶矽上並應用於光偵測器的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以二維石墨烯為基材,利用還原法將奈米粒子置放於石墨烯表面,
供作電化學觸媒應用。以兩種合成工藝,研究將石墨烯與金屬或金屬氧化物奈
米粒子製作成奈米複材,並進行於電化學催化反應。本論文利用離子液體作為
還原劑,加上微波加速,合成方型奈米鉑金電化學觸媒開始,進行甲醇氧化反
應應用;確認以石墨烯為碳載體的複合電化學觸媒,能發揮功效後,便合成一
系列鉑金-金/石墨烯,鉑金-鎳/石墨烯,鉑金-鐵/石墨烯等複材,進行電化學觸
媒研究,並將雙金屬奈米粒子石墨烯複合電化學觸媒應用於甲醇氧化反應,甲
酸氧化反應等。另外,鎳-氧化鎳石墨烯電化學觸媒,則是應用於氧還原反應。
上述合成出來的雙金屬奈米觸媒,經由穿透式電子顯微鏡分析,金屬奈米粒子
之粒徑皆為5-15 奈米之間。表面化學電子光譜分析(ESCA)金屬奈米粒子與石
墨烯及高分子表面改質之石墨烯間的作用,顯現出元素化學環境的變化。上述
奈米複合電化學觸媒,亦皆經由X光繞射儀分析其結晶結構,了解其本質。金
屬奈米粒子鍵結在石墨烯表面的總量,是利用熱重分析在空氣環境下,800oC將石墨烯燃燒去除後之殘重來判斷取得,並供作為分析電化學各種氧化反應,
評估電化學觸媒實驗用量的依據。在甲醇氧化反應分析上,可以得出鉑金-金/
石墨烯與鉑金-鐵/石墨烯不利於甲醇氧化反應,鉑金-金/石墨烯比較適合甲酸氧
化反應之用。鉑金-鐵/石墨烯無法有效地進行相關的氧化反應。鉑金-鎳/石墨烯
則相當適合進行甲醇氧化反應。利用循環伏安法可以發現鉑金-鎳/石墨烯電化
學分析圖譜上甲醇氧化峰與一氧化碳吸收峰的比值約為3 倍之多,亦即鉑金-
鎳/石墨烯相對能夠有效地防止一氧化碳毒化鉑金觸媒,與方型鉑金/石墨稀效
果相似。至於氧還原反應,則是由非鉑金的鎳-氧化鎳/石墨烯奈米複合電化學
觸媒較為有效。
摘要(英) In this thesis, the electrocatalyst nanocomposites, prepared from metal
nanoparticles and graphene, have been studied for performance of their
electrocatalysis. There are two synthetic methods employed in preparation: one is
the green synthesis in 2-hydroxyethanaminium formate ionic liquid with microwave
assistance; the other is the hydrothermal synthesis with metal precursor and modified
graphene in one pot. The ionic liquid and microwave assisted synthesis produced
cubic Pt nanoparticles on graphene sheet (cubic Pt/G), which were evaluated with
performance on methanol oxidation reaction (MOR). The one-pot hydrothermal
method produced the PDDA-modified graphene with metal nanoparticles on it
(PtAu/PDDA-G, PtNi/PDDA-G, PtFe/PDDA-G or Ni-NiO/PDDA-G). These
nanocomposites were examined with transmission electron microscopy (TEM) for
morphology and also for nanoparticle sizes. Nanoparticles on the cubic Pt/G are
about 5-20 nm in size and those of PtM/PDDA-G and Ni-NiO/PDDA-G are about ~5
nm in size. From the X-ray diffraction analysis, nanoparticles on the PtNi/PDDA-G
are a single alloy, to apply to the MOR electrocatalysis. The results of ESCA
analysis revealed that nanoparticles on the PtNi/PDDA-G are in elemental
environments on the graphene surface. The thermal gravimetric analysis (TGA) was
employed for evaluation of amounts of the metal deposited on graphene.
As electrocatalyst, the MOR performance of cubic Pt/G is no better than that of
commercial Pt on carbon (60wt% Pt/C). However, the anti CO-poisoning capability
and the unit mass performance of cubic Pt/G is better those of 60wt% Pt/C. The
PtNi/PDDA-G is one of the candidates for anode electrocatalysis for use in direct
methanol fuel cells. The Ni-NiO/PDDA-G is also an candidate for fuel cell cathode
electrocatalysis in oxygen reduction reaction (ORR) utilization. In addition, the formic
acid oxidation reaction utilizating of PtAu/PDDA-G was also investigatied in this
thesis.
關鍵字(中) ★ 石墨烯
★ 電化學觸媒
★ 甲醇氧化反應
★ 甲酸氧化反應
★ 氧還原反應
★ 奈米金屬粒子
關鍵字(英) ★ Graphene
★ Electrocatalysis
★ Methanol Oxidation Reaction
★ Formic Acid Oxidation Reaction
★ Oxygen Reduction Reaction
★ Metal Nanoparticles
論文目次 Content
1. Introduction of the Graphene Nanocomposites for Electrocatalysis Applications .................................... 1
1.0 Background of Graphene Derivatives .................................................................................................. 1
1.1 Background of Fuel cells ........................................................................................................................ 6
1.2 Types of Fuel cell ................................................................................................................................... 9
1.3 Carbon Materials as Support for Electrocatalysts ............................................................................ 13
1.4 Synthesis of Graphene .......................................................................................................................... 17
1.5 PtM Bimetallic Electrocatalysts .......................................................................................................... 18
1.6 Electrocatalysts for Oxygen Reduction Reaction .............................................................................. 21
1.7 Objectives and Scope of This Work .................................................................................................... 21
1.8 References ............................................................................................................................................ 22
2. Graphene Nanocomposite with Platinum Nanoparticles for Utilization in Methanol Oxidation
Reaction .............................................................................................................................................................. 29
2.1 Experimental Section ........................................................................................................................... 32
2.1.1 Modified graphene sheets ......................................................................................................... 32
2.1.2 XRD characterization ............................................................................................................... 34
2.1.4 Pt content measurement with TGA and ICP-MS ................................................................... 34
2.1.5 TEM characterization ............................................................................................................... 34
2.1.6 X-ray photoelectron spectroscopic (XPS) analysis ................................................................. 35
2.1.7 Electrochemical analysis ........................................................................................................... 35
2.2 Results and discussions ........................................................................................................................ 35
2.2.1 Synthesis and characterization of cubic Pt nanoparticles on graphene sheets .................... 36
2.2.2 ECSA analysis ............................................................................................................................ 43
2.2.3 Methanol oxidation reaction (MOR) ....................................................................................... 44
2.3 Conclusion ............................................................................................................................................ 48
2.4 References ............................................................................................................................................ 48
3. Graphene Nanocomposites with PtNi Alloy Nanoparticles for Utilization in Methanol Oxidation
Reaction .............................................................................................................................................................. 52
3.1 Introduction ......................................................................................................................................... 52
3.2 Experimental Section ........................................................................................................................... 53
3.3 Results and Discussion ......................................................................................................................... 56
3.4 Conclusion ............................................................................................................................................ 63
3.5 References ............................................................................................................................................ 63
4. Synthesis and Characterization of Ni-NiO Nanoparticles on PDDA-Modified-Graphene for Utilization
in Oxygen Reduction Reaction .......................................................................................................................... 66
4.1 Introduction ......................................................................................................................................... 66
4.2 Methods ................................................................................................................................................ 68
4.3 Results and Discussion ......................................................................................................................... 70
4.5 References ............................................................................................................................................ 77
5. Synthesis and Characterization of Au and PtAu Nanoparticles on PDDA-Graphene Sheet for
Application on Formic Acid Oxidation ............................................................................................................ 79
5.1 Introduction ......................................................................................................................................... 79
v
5.2 Experimental Section ........................................................................................................................... 81
5.2.1 PDDA-modified Graphene (PDDA-G) .................................................................................... 81
5.2.2 Nanoparticles Deposition on PDDA-G .................................................................................... 83
5.2.3 X-ray Diffraction (XRD) Characterization ............................................................................. 85
5.2.4 Transmission Electron Microscopy (TEM) Analysis ............................................................. 85
5.2.5 Thermal Gravimetric Analysis (TGA) .................................................................................... 85
5.2.6 X-ray Photoelectron Spectroscopic (XPS) Analysis ............................................................... 86
5.2.7 Electrochemical Analysis .......................................................................................................... 87
5.3. Results and Discussion ........................................................................................................................ 87
5.3.1 Structural study ......................................................................................................................... 87
5.3.2 Thermal study ............................................................................................................................ 88
5.3.3 XPS study .................................................................................................................................. 88
5.3.2 Electrochemical study ............................................................................................................... 89
5.4. Conclusion ........................................................................................................................................... 94
6. References .............................................................................................................................................. 94
6. Conclusions .................................................................................................................................................... 97
Acknowledgement ............................................................................................................................................. 99
參考文獻 [1]W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 1339 (1958)
[2]R.S. Swathi, K.L. Sebastian, J. Chem. Phys. 129 054703 (2008)
[3] R.S. Swathi, K.L. Sebastian, J. Chem. Phys. 130 086101 (2009)
[4]K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L.
Stormer, Solid State Comm. 146 2008 351 (2008)
[5]A.H. Castro Neto, F. Guinea, N.M.R. Peres, Rev. Modern Phys. 81 109 (2009)
26
[6]J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotech. 3 206
(2008)
[7]I.A. Ovid′ko, Rev. Adv. Mater. Sci. 34 1 (2013)
[8]C.S. Ruiz-Vargas, H.L. Zhuang, P.Y. Huang, A.M. van der Zande, S. Garg, P.L.
McEuen, D.A. Miller, R.C. Henning, J. Park, Nano Lett. 11 2259 (2011)
[9]S. Bertolazzi, J. Brivio, A. Radenovic, A. Kis, H. Wilson, L. Prisbery, E. Minot, A.
Tselev, M. Philips, M. Viani, D. Walters, R. Proksch, Microscop. Ana. SPM,
21 (2013)
[10]R. Rasuli, A. Iraji, M.M. Ahadian, Nanotech. 21 185503 (2010)
[11]I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, J. Vac. Sci.
Technol. B 25 2558 (2007)
[12] I. Zaman, Adv. Func. Mater. 22 2735 (2012)
[13] P.R. Nair, P Blake, A. N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber,
N.M. Peres, A.K. Geim, Science 320 1308 (2008)
[14]A.B. Kuzmenko, E. Van Heumen, F. Carbone, D. van der Marel, Physical Review
Letters 100 117401 (2008)
[15]K.V. Sreekanth, S. Zeng, J. Shang, K.-T.Yong, T. Yu, Sci. Reports 2 737 (2012)
[16] H.P. Boehm, W. Scholz, Zeit. Anorg. Alleg. Chem. 335 74 (1965)
[17] S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, J. Mat.
Chem.16 155 (2006)
[18] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, H.; M. Herrera-Alonso, D.H.
Adamson, R.K. Prud′Homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B
27
110 8535 (2006)
[19] D. Pandey, R. Reifenberger, R. Piner, Surf. Sci. 602 1607 (2008)
[20] C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M.
Burghard, K. Kern, Nano Lett. 7 3499 (2007)
[21] C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M.
Burghard, K. Kern, Nano Lett. 9 2206 (2009)
[22] G. Eda, J. Ball, C. Mattevi, M. Acik, L. Artiglia, G. Granozzi, Y. Chabal, T.D.
Anthopoulos, M. Chhowalla, J. Mater. Chem. 21 11217 (2011)
[23] F. Taufany, C.-J. Pan, F.-J. Lai, H.-L. Chou, L.S. Sarma, J. Rick, J.-M. Lin, J.-F.
Lee, M.-T. Tang, B.-J. Hwang, Chem. Eur. J. 19 905 (2013)
[24] J.M. Andújar, F. Segura, Renew. Sust. Energ. Rev. 13 2309 (2013)
[25] N.H. Behling, Chapter 3: History of Alkaline Fuel Cells, in Fuel Cells Current
Technology Challenges and Future Research Needs, (Elsevier, 2013), p. 37
[26] S. Mekhilef, R.S. Safari, Renew. Sust. Energ. Rev. 16 981 (2012)
[27] X.-Z. Yuan, H. Li, S. Zhang, J. Martin, H. Wang, J. Power Sources 196 9107
(2011)
[28] G. Weaver, Chapter 5: Fuel Cell Technology Review, World Fuel cells, (Elsevier,
2002). p. 81.
[29] X.-Z. Yuan, H. Wang, in: J. Zhang, PEM Fuel Cell Electrocatalysts and
Catalyst Layers: Fundamentals and Applications (Springer, New York, 2008),
p.1
[30] W. Qian, D.P. Wilkinson, J. Shen, H. Wang, J. Zhang, J. Power Sources 154
28
202 (2006)
[31] T.V. Parsons, J. Electroanal. Chem. 257 9 (1988)
[32] D.M. Gattia, M.V. Antisari, L. Giorgi, R. Marazzi, E. Piscopiello, A. Montone, S.
Bellitto, S. Licoccia, E. Traversa J. Power Sources 194 243 (2009)
[33] M. Nie, P.K. Shen, M. Wu, Z. Wei, H. Meng, J. Power Sources 156 173 (2006)
[34] J. Liang, S.Z. Qiao, G.Q. (Max) Lu, D. Hulicova-Jurcakova, in: J.M.D. Tascón
Novel Carbon Adsorbents, (Elsevier, 2012), p.549
[35] V. Baglio, A. Stassi, A. Di Blasi, C. D’Urso, V. Antonucci, A.S. Aricò,
Electrochim. Acta 53 1360 (2007)
[36] W. Zhang, P. Sherrell, A.I. Minett, J.M. Razal, J. Chen, Energy Environ. Sci. 3
1286 (2010)
[37] A.L. Dicks, J. Power Sources 156 128 (2006)
[38] N. Mansor, A.B. Jorge, F. Corà, C. Gibbs, R. Jervis, P.F. McMillan, X. Wang,
D.J.L. Brett, J. Phy. Chem. B, 118, 6831 (2014)
[39] M. Scarselli, P. Castrucci, M. De. Crescenzi, J. Phys.: Condens. Matter 24
313202 (2012)
[40] W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 1339 (1958)
[41] L. Shahriary, A.A. Athawale, Inter. J. Renew. Energ. Environ. Eng., 2 1 (2014)
[42] V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, A.
Buasuri, Adv. Mater. Sci. Eng., 2013 1 (2013)
[43] T. Chen, B. Zheng, J.L. Liu, J.H. Dong, X.Q. Liu, Z. Wu, Z.M. Li, J. Phy.: Conf.
Ser. 188 012051 (2009)
29
[44] S. Park, R. Roff, Nat. Nanotechn. 58 1 (2009)
[45] L.A. Ponomarenko, F. Scheme, M.I. Katsnelson, R. Yang, E.W. Hill, K.
Novoselov, A.K. Geim, Science 320 356 (2008)
[46] X. Wang, X. Li, L. Zhang, P.K. Webber, H. Wang, J. Guo, H. Dai, Science 324
768 (2009)
[47] J.B. Wu, A. HéCtor, Z. Bao, Z. Liu, Y. Chen, P. Peumans, ACS Nano 4 43 (2010)
[48] M. Yankowitz, J.I. Wang, A.G. Birdwell, Y.A. Chen, K. Watanabe, T. Taniguchi,
P. San-Jose, P. Jarillo-Herrero, B.J. Leroy, Nat. Mater. 13 786 (2014)
[49] J. Lin, A.-B.O. Raji, K. Nan, Z. Peng, Z. Yan, E.L.G. Samuel, D. Natelson, J.M.
Tour, Adv. Func. Mater. 24 2044 (2014)
[50] B. Luo, S. Xu, X. Yan, Q Xue, J. Electrochem. Soc., 160 F262 (2013
[51] Y. Kuang, J. Chen, X. Zheng, Z. Zhang, Q. Zhou, C. Lu, Nanotechn. 24 395604
(2014)
[52] X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Energ.
Environ. Sci. 4 2736 (2011)
[53] M. Watanabe, H. Igarashi, T. Fujino, Electrochem. Commu. 67 1194 (1999)
[54] T. Tada, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem. Soc. 146 3750
(1999)
[55] N.M. Markovic, H.A. Gasteiger, P.N. Ross, X. Jiang, I. Villegas, M.J. Weaver,
Electrochim. Acta 40 91 (1995)
30
[56] T. Iwasita, Electrochim. Acta 47 3663 (2002)
[57] P.A. Christensen, A. Hamnett, G.L. Troughton, J. Electroanal. Chem. 362 207
(1993)
[58] A. Hamnett, Catal. Today 38 445 (1997)
[59] D. Chu, S. Gilman, J. Electrochem. Soc. 143
[60] M.F. Silva, B.C. Batista, E. Boscheto, H. Varela, G.A. Camara, J. Braz. Chem.
Soc. 23 831 (2012)
[61] P. Piela, E. Christian, E. Brosha, F. Garzon, P. Zelenay, J. Electrochem. Soc. 151
A2053 (2004)
[62] J.C. Ganley, N.K. Karikari, A. Raghavan, J. Fuel Cell Sci. 7 031019 (2010)
[63] T.I. Valdez, S. Firdosy, B. Koel, S.R. Narayanan, ECS Trans. 1 293 (2006)
[64] I. Dutta, M.K. Carpenter, M.P. Balogh, J.M. Ziegelbauer, T.E. Moylan, M.H.
Atwan, N.P. Irish, J. Phys. Chem. C Nanomater. Interfaces 114 16309 (2010)
[65] Z. Zhu, Y. Zhai, S. Dong, ACS Appl. Mater. Interfaces 6 16721 (2014)
[66] E. Antolini, Mater. Chem. Phys. 78 563 (2003)
[67] T.J. Schmidt, U.A. Paulus, H.A. Gasteiger, R.J. Behm, J. Electroanal. Chem. 508
41 (2001)
[68] Y. Li, Y. Li, E. Zhu, T. McLouth, C.Y. Chiu, X. Huang, Y. Huang, J. Am. Chem.
Soc. 134 12326 (2012)
[69] K. Huang, K. Sasaki, R.R. Adzic Y. Xing, J. Mater. Chem. 22 16824 (2012)
[70] J. Cruickshank, K. Scott, J. Power Source, 70 40 (1998)
[71] S. Hikita, K. Yamane, Y. Nankajima, JSAE Review 22 151 (2001)
31
[72] R. Jiang, D. Chu, J. Electrochem. Soc. 151 A69 (2004)
[73] V.G. Guterman, T.A. Lastovina, S.V. Belenov, N.Y. Tabachkova, V.G.
Vlasenko, I.I. Khodos, E.N. Balakshina, J. Solid State Electrochem. 18 1307
(2004)
[74] V.E. Guterman, S.V. Belenov, T.A. Lastovina, E.P.Fokina, N.V. Prutsakova,
Y.B. Konstantinova, Russ. J. Electrochem. 44 933 (2011)
[75] D. Zhao, B.-Q. Xu, Phys. Chem. Chem. Phys. 8 5106 (2006)
指導教授 劉陵崗、陳賜原
(Lin-Kan LIU、Tz-Yuan Chen)
審核日期 2015-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明