博碩士論文 982403001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.236.231.14
姓名 廖偉呈(Wei-cheng Liao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 空氣中有機污染物質譜監測技術開發與應用
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用★ VOC前濃縮與預警系統之建構
★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用★ 臭氧前趨物連續監測與臭氧生成之光化學探討
★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析
★ 近地表臭氧前驅物分析之前濃縮技術改良★ 自動化噴霧捕捉分析系統之建立與研究
★ 大體積固相微萃取水中揮發性有機污染物★ 空氣中有機污染物自動分析技術之開發研究 壹﹑碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究 貳﹑有機污染物垂直探空光化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以質子轉移反應質譜儀(proton-transfer-reaction mass
spectrometry, PTR-MS)為技術核心建立具快速、高靈敏空氣污染鑑識 方法,應用於工業區空汙問題診斷。PTR-MS 屬於直接進樣式質譜設 備(direct injection mass spectrometry, DIMS),有別於一般傳統層析質 譜法,無需透過前處理與管柱分離機制,可直接快速分析大氣中揮發 性有機化合物(volatile organic compounds, VOCs),質譜性能具有高時 間解析與低偵測極限的優點。本研究將使用兩種類型 PTR-MS,包含 四極柱(PTR-QMS)與飛行時間質譜儀(PTR-ToF/MS)應用敏感性工業 區排放之 VOC 鑑定。
本論文結構分為「質譜儀分析方法與應用技術開發」與「實場觀 測與模式整合」兩大主題;前者針對 PTR-MS 性能建立實驗室測試程 序,後者則探討排放傳送至受體之關係。研究成果可分為三個部分: (1) 實驗室 PTR-MS 測試包含化學物質分析與資料庫建立;(2) 污染 物觸發技術開發與現地實測 (3) 現地污染物觀測結合模式模擬進行 個案分析。
在第一部分研究成果中,實驗選定工業區製程常用之 25 種原物 料(6 種醇類、2 種醛類、5 種酯類、2 種醯胺類、6 種鹵碳化合物、1 種呋喃、3 種芳香烴)為測試對象,以滲透法製備標準氣體,配合階段
稀釋測試 QMS 分析的即時性、穩定性、線性與準確度。QMS 實驗結 果顯示,QMS 對於 25 種化學物質之整體分析變異 RSD 小於 10%、 線性表現(R2)大於 0.99,準確度部分透過計算之理論反應速率常數(k 值)校正後,顯示 QMS 不透過繁瑣的分析校正的半定量分析方法,於 ppb 濃度等級之分析範圍,相對誤差可在 2 倍以內。ToF/MS 同重物 分析實驗部分,以 ToF/MS 針對 8 組同重物進行測試(60 g/mole、62 g/mole、73 g/mole、74 g/mole、90 g/mole、106 g/mole、120 g/mole、 179 g/mole),測試結果發現質量解析度於 5000 m/Δm 下,各組同重物 成功由 ToF/MS 分離鑑別,依據監測質量與質量誤差數據評估,其質 量分辨能力可至小數第二位或至第三位。
在第二部分研究成果中,實驗成功建立 H2S 與 QMS 觸發觀測技 術,並且於選定之三處工業區(桃園煉油廠、新竹工業區、中壢工業 區)執行現地觀測。觸發系統能在突發性高值事件當下立即觸動採樣 裝置保存事件空氣樣本,樣本再攜回實驗室以 GC/MS/FID (gas chromatography/mass spectrometry/flame ionization detection)分析 108 種 VOCs,以鑑定空汙事件之 VOC 組成。在桃園煉油廠 H2S 觸發實 測中,監測期間在採樣閾值 8.5 ppb 下成功觸發 10 個事件樣本,經由 GC/MS/FID 的分析,事件樣本中 C2-C5 烷類占總量之 90%,顯示來工 業區存在逸散量大之排放源。再以同樣概念將 QMS 作為觸發系統,
於新竹工業區與中壢工業區內測試,QMS 發現產業組成混雜的工業 區周界中存在幾種主要 VOCs,包含 methanol、acetaldehyde、acetone、 methyl ethyl ketone (MEK)等常見之有機溶劑,濃度可達數百個 ppb; 再以這些濃度顯著的 VOCs 作為觸發對象,鎖定周界高值事件進行採 樣。新竹工業區部分共採集 17 個事件樣本(觸發閾值:methanol = 250 ppb、acetaldehyde = 60 ppb、MEK = 250 ppb、N,N-dimethylformamide (DMF) = 50 ppb);中壢工業區部分共 13 個事件樣本(觸發閾值: methanol = 160 ppb、acetaldehyde = 100 ppb、acetone = 1000 ppb、MEK = 250 ppb、toluene = 150 ppb);事件樣本顯示含氧有機物質 OVOCs (acetone、MEK、methyl isobutyl ketone (MIBK)、methyl butyl ketone (MBK)、ethyl acetate (EA)、vinyl acetate (VA)、isopropanol (IPA)、methyl tert-butyl ether (MTBE))之比例亦相當高,新竹工業區占 108 種 VOCs 總濃度的 15% - 60%,而中壢工業區則占 108 種 VOCs 總濃度的 32% - 84%,顯示工業區大量 OVOC 排放可能是造成異味事件與空氣品質 不良的元兇之一。
第三部分研究成果中,以雙機監測模式將 QMS 與 ToF/MS 架設 於工業區現址進行同步觀測,執行污染物調查工作,ToF/MS 設置於 排放源中心,作為鑑定周界化學物質之角色;此外,為了快速針對觀 測資料進行污染物鑑定,本研究建立雪球抽樣法(snowball sampling),
用以從龐大的觀測資料快速的篩選出主要 VOC 成分。QMS 則設置於 排放源之下風處,作為攔截廠區污染排放之角色。雙機監測的方法針 對六輕工業區(長春大連)與龍德工業區進行表現。六輕工業區部分, 發現 37 種主要成分,包含醇、醛、酮、酯、有機酸、烯類、芳香烴, 但以 methanol 為主要的排放成分;龍德工業區發現 15 種主要成分, 包含醇、酯、酮、有機酸、芳香烴,以 methyl acetate、ethyl acetate 為主要的排放成分。
PTR-MS 觀測結果會進一步與 PAMS-AQM 大氣模式模擬結合, 解釋污染物之排放源與受體的關係;PAMS-AQM 能於最小 3 x 3 公 里網格解析下,模擬氣象場中污染物之傳輸與擴散行為。六輕長春大 連主要排放物 methanol 之模擬結果顯示,現場污染物濃度明顯受到 當地風場影響,可使 methanol 濃度由 5.5 ppm 瞬間降至數個 ppb。在 龍德工業區部分,主要排放物 methyl acetate 與 ethyl acetate 會因海陸 風因素,每日正午之海風會將污染物往西吹向下風處造成高值事件。
PTR-MS 與傳統線上 GC/MS 於工業區場址執行平行分析工作, 選擇空氣中主要的 VOCs (methanol、acetaldehyde、benzene、toluene、 C2-benzene、MEK、acetone、ethyl acetate (EA))比對,結果顯示 QMS 量測之趨勢變化與 GC/MS 趨勢相當吻合,亦說明 PTR-MS 對於空氣 中之高反應性物質(如 OVOCs)之分析能力優於傳統 GC/MS 方法。
摘要(英) This study is to develop rapid, sensitivity and diagnostic methodology involving the use of proton-transfer reaction mass spectrometry (PTR-MS) to investigate chemical pollutants around industrial parks. PTR-MS is one of direct injection mass spectrometry (DIMS), which can measure trace levels of toxic and odorous volatile organic compounds (VOCs) at the speed of few seconds to minutes without prior chemical separation as in gas chromatography mass spectrometry (GC-MS). Two types of mass spectrometry were involved: quadruple (called PTR-QMS) and time of flight (called PTR-ToF/MS).
This thesis is structured in two themes: 1. development of in-lab VOC testing procedures for PTR-MS; 2. integrating PTR-MS measurements with model simulations to establish source-and-receptor relationship. Major achievements are classified into: (1) in-lab testing of PTR-MS, (2) developing triggered sampling techniques to capture plume events in industrial parks, (3) field measurements with model simulations to diagnose chemical pollution near industrial parks.
Achievement (1): Twenty-five odorous VOC gas streams (6 alcohols, 2 aldehydes, 5 esters, 2 amides, 6 halocarbons, 1 furan and 3 aromatics) were generated via the method of permeation to test PTR- QMS with stepwise dilution for its response to the rapid concentration change. The results showed relative standard deviations (RSDs) smaller than 10% and linearity expressed as R2 better than 0.99 for most of the 25 compounds. If using theoretical k values for estimating concentrations without calibration, the estimated concentrations at ppb level can be accurate within a factor of two, which can qualify PTR-MS as a semi- quantitative method. The test of 8 pairs of isobaric compounds (i.e., 60 g/mole, 62 g/mole, 73 g/mole, 74 g/mole, 90 g/mole, 106 g/mole, 120
g/mole, 179 g/mole) showed that PTR-ToF/MS can successfully separate all these 8 pairs of compounds with mass accuracy down to the second or third decimal point under the 5000 m/Δm mass resolution as claimed by the manufacturer.
Achievement (2): H2S and PTR-QMS triggered sampling apparatuses were constructed in laboratory and tested in three industrial parks (Taoyuan refinery plant, Hsinchu industrial park, Chungli industrial park) to capture event samples using H2S or individual VOCs as the trigger compound. The triggered samples were then analyzed with in-lab GC/MS/FID for 108 VOCs to characterize the chemical composition of the events. Ten event samples were triggered by H2S analyzer at the 8.5 ppb threshold value at Taoyuan refinery plant to address the foul smell problem. The result shows that C2-C5 alkanes are the major component for the event samples (90% of total l08 VOCs), which is consistent with the notion that the volatile part of hydrocarbons are released as fugitive emissions from refinery. The same concept was tested in field at both Hsinchu and Chungli industrial parks using PTR-QMS as the trigger device. Several prominent compounds (such as methanol, acetaldehyde, acetone, methyl ethyl ketone (MEK), etc.) were found and thus used as the trigger gases. Seventeen event samples were triggered at Hsinchu (threshold value: methanol = 250 ppb, acetaldehyde = 60 ppb, MEK = 250 ppb, N,N-dimethylformamide (DMF) = 50 ppb). Thirteen event samples were triggered at Chungli (methanol = 160 ppb, acetaldehyde = 100 ppb, acetone = 1000 ppb, MEK = 250 ppb, toluene = 150 ppb). It were found that OVOCs (acetone, MEK, methyl isobutyl ketone (MIBK), methyl butyl ketone (MBK), ethyl acetate (EA), vinyl acetate (VA), isopropanol (IPA), methyl tert-butyl ether (MTBE)) accounted for 15% - 60% of the total amount of 108 VOCs in Hsinchu, and 32% - 84% in Chungli. Such large fractions of OVOCs in the air could explain the frequent odor complains reported in the vicinity of the industrial parks.
Achievement (3): Both QMS and ToF/MS were employed simultaneously to form a dual-instrument deploying approach in the field. With such an approach, the ToF/MS with its superior mass resolution was placed in the industrial park to identify characteristic pollutants. To facilitate rapid compound identification, a searching method called “snowball sampling” was designed to rapidly find prominent compounds buried in a large mass dataset. Simultaneously, QMS was deployed downwind to register pollution events. The dual-instrument approach was conducted in Mailiao and Longde industrial parks. In Mailiao, 37 prominent compounds (including alcohols, aldehydes, ketones, organic acids, alkenes and aromatics) were found, and the methanol’s level topped the compound list. In Longde, 15 prominent compounds (including alcohols, aldehydes, ketones, organic acids and aromatics) were found, and methyl acetate and ethyl acetate had the highest levels.
Atmospheric modeling was coupled with chemical measurements with PTR-MS to establish the source-to-receptor transport. The PAMS- AQM can provide overall transport and dispersion of pollutants due to meteorology with a fairly coarse resolution of 3 x 3 km. This approach was employed in industrial parks to explain the observed events of methanol (Max. = 5.5 ppm) in Mailiao in the local wind field. In another experiment, ethyl acetate and methyl acetate were the two major pollutants in Longde. The simulations successfully explained the events of the two esters observed at the downwind site due to the land-sea- breeze.
PTR-MS was validated in the field by conventional in-situ GC/MS. The concentration variations of prominent VOCs (methanol, acetaldehyde, MEK, EA, acetone, benzene, toluene, C2-benzene) in QMS
measurements agreed well with the variations of GC/MS method at sub- ppb level. The validation by GC-MS gave confidence to PTR-MS measurements of more reactive VOCs, such as OVOCs, which the conventional GC-MS method is more difficult of measuring.
關鍵字(中) ★ 質子轉移反應質譜儀
★ 揮發性有機污染物
★ 工業區
關鍵字(英) ★ proton transfer reaction mass spectrometry
★ volatile organic compounds
★ industrial parks
論文目次 第 一 章 研究背景.. ............................................................................. 1
1-1 緣起...............................................................................................1
1-2 工業區空氣污染研究...................................................................9
1-3 質譜分析技術發展.....................................................................14
1-4 論文之研究架構.........................................................................18
第 二 章 質譜儀分析方法與應用技術開發................................................... 23 2-1 工作方法介紹.............................................................................23
2-1-1 化學物質分析與資料庫建立..........................................23
2-1-2 同重化學物質分析與資料庫建立..................................29
2-1-3 質譜儀觸發系統開發......................................................33
2-2 文獻回顧與探討.........................................................................35
2-2-1 PTR-MS 離子-分子反應 (ion molecule reaction, IMR) 35
2-2-2PTR-MS 大氣監測研究..................................................47
2-2-3 觸發系統研究..................................................................53
2-2-4ToF/MS 技術發展............................................................56
2-3 設備介紹.....................................................................................59
2-3-1 QMS 原理 ......................................................................... 59
2-3-2ToF/MS 原理....................................................................68
2-3-3 標準氣體製備..................................................................72
2-3-4 硫化氫監測儀 (H2S analyzer) ........................................ 75
2-3-5 總碳氫化合物分析儀 (THC analyzer) .......................... 78
2-3-6 自動控制軟體..................................................................82
2-3-7 全自動採樣器..................................................................85
2-4 結果與討論 1 - 標準氣體分析與驗證...................................... 87
2-5 結果與討論 2 - QMS 分析品保評估 ........................................ 91
2-6 結果與討論 3 - QMS k 值定量校正 ........................................ 101
2-6-1 滲透管濃度估算與QMS準確度評估.........................108
2-7 結果與討論 4 - ToF/MS 同重化學物質分析品保評估 ......... 117
2-8 結果與討論 5 – 實驗室 ToF/MS 與 QMS 平行比對 ............. 127
2-9 結果與討論 6 - 觸發裝置建立與系統測試............................ 131
2-9-1 硫化氫(H2S)觸發裝置...................................................131
2-9-2 多成分(QMS&THC)觸發裝置...................................138
2-10 小結.........................................................................................149
第 三 章 實場觀測與模式整合.............................................................. 151
3-1 工作方法介紹...........................................................................151
3-1-1 雙機比對觀測................................................................151
3-1-2 污染物觸發觀測技術....................................................154
3-1-3 觀測結合模式分析........................................................156
3-1-3-1 PAMS-AQM 簡介 ............................................... 156
3-1-3-2 Wind Model 簡介................................................. 163
3-1-4 觀測場址簡介與佈署....................................................166
3-1-4-1 六輕工業區.........................................................166
3-1-4-2 中油桃煉廠.........................................................181
3-1-4-3 新竹工業區.........................................................185
3-1-4-4 中壢工業區.........................................................188
3-1-4-5 龍德工業區.........................................................191
3-2 結果與討論 1 - 雙機比對觀測................................................ 197
3-2-1 QMS vs. In-situ GC/MS.................................................. 197
3-2-2 QMS vs. In-situ GC/MS/FID .......................................... 202
3-3 結果與討論 2 - 觀測資料分析................................................ 207
3-3-1 資料分析法 .................................................................... 207
3-3-2 六輕-台西地政事務所 (QMS).....................................210
3-3-3 六輕-美豐國小 (QMS, in-situ GC/MS/FID)................ 215
3-3-4 六輕-長春大連 (QMS, ToF/MS) .................................. 224
3-3-5 龍德-東興國小 (QMS, ToF/MS) .................................. 247
3-4 結果與討論 3 - 污染物觸發觀測............................................ 259
3-4-1 中油桃煉廠 (H2S 觸發系統).......................................259
3-4-2 新竹工業區 (QMS 觸發系統)....................................268
3-4-3 中壢工業區 (QMS 觸發系統)....................................282
3-5 結果與討論 4 - 模式個案分析................................................ 297
3-5-1 PAMS-AQM - 長春大連 ............................................... 297
3-5-2 PAMS-AQM - 龍德工業區 ........................................... 302
3-5-3 Wind-model – 六輕美豐國小........................................ 308
3-5-4 Wind-model - 新竹工業區 ............................................ 312
3-6 小結..... ......................................................................................319
第 四 章 結論...................................................................................... 325
參考文獻 ....................................................................................... 333
研究著作............................................................................................ 351
參考文獻 [1] 台灣編定工業區土地資訊系統. http://120.126.138.196/idb/.
[2] 工業區分析報告. http://idbpark.moeaidb.gov.tw/Report/Default.
[3] Cetin, E.; Odabasi, M.; Seyfioglu, R., Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. The Science of The Total Environment 2003, 312 (1-3), 103-112.
[4] Santis, F.; Fino, A.; Menichelli, S.; Vazzana, C.; Allegrini, I., Monitoring the air quality around an oil refinery through the use of diffusive sampling. Analytical and Bioanalytical Chemistry 2004, 378 (3), 782-788.
[5] Lin, T.-Y.; Sree, U.; Tseng, S.-H.; Chiu, K. H.; Wu, C.-H.; Lo, J.-G., Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmospheric Environment 2004, 38 (25), 4111-4122.
[6] Na, K.; Kim, Y. P.; Moon, K.-C.; Moon, I.; Fung, K., Concentrations of volatile organic compounds in an industrial area of Korea. Atmospheric Environment 2001, 35 (15), 2747-2756.
[7] E. C. Fortner, J. Z., R. Zhang, W. Berk Knighton, R. M. Volkamer, P. Sheehy, L. Molina, and M. André, Measurements of Volatile Organic Compounds Using Proton Transfer Reaction – Mass Spectrometry during the MILAGRO 2006 Campaign. Atmospheric Chemistry and Physics 2009, 9, 467-481.
[8] 楊秀宜、李聯雄, 國內危害化學物質暴露評估資料庫建立先驅計畫; 行政院勞工委員會勞工安全衛生研究所, 2009.
[9] 凌永健, 廢棄物焚化爐有害空氣污染物及惡臭物質管理輔導計畫;桃園縣政府環境保護局, 2004.
[10] 李文亮, 毒性化學物質減量技術建立之研究-新竹科學園區及湖口
工業區毒性化學物質環境流布調查與資料庫建立; 行政院環境保護
署, 1998.
[11] 金繼武, 運用揮發性有機物異味威脅值評估工業區污染排放特徵及
異味陳情案件污染來源之研究; 國立聯合大學, 2011.
[12] 宋宗信, 以 GC/MS 偵測高科技工業區內空氣中揮發性有機物濃度
之研究; 國立交通大學, 2010.
[13] 邱郁凱, 工業區氣味化合物分析及降解技術; 國立清華大學, 2009.
[14] 黃思蓴, 新竹科學工業園區周界空氣中揮發性有機物(VOCs)量測;
中華大學, 2002.
[15] 謝瑞豪, 以開放式霍氏紅外線光譜儀重建工業區空氣毒性物質之時
空分佈; 國立台灣大學, 2000.
[16] 蔡耀輝, 台北縣空氣污染指紋調查及輔導減量計畫; 新北市政府環
境保護局, 2011.
[17] 施志恆、白依平, 宜蘭縣 100 年度工業區空氣污染事件監測及緊急
應變計畫; 宜蘭縣政府環境保護局, 2011.
[18] 蕭祥憲、張寶額、張瑞琪, 石化工業區周界空氣中甲基丙酮、甲基
丁基酮、甲基異丁酮、丙酮、丁酮、甲基丙烯酸甲酯、乙酸乙酯、 乙醯乙酸甲酯、丙烯酸甲酯、正丁酸甲酯、戊基乙酸甲酯、甲醇、 乙醇、乙二醇、丙三醇、異丙醇及丁醇等十七項揮發性有機物調查 之研究; 行政院環境保護署, 2003.
[19] 羅俊光、吳劍侯, 工業區特殊染物成分調查、分析技術研究; 行政 院環境保護署, 2003.
[20] 羅中恆、吳瀧川, 自動熱脫附氣相層析質譜法分析大氣環境中揮發性有機物之探討; 行政院國家科學委員會/行政院環境保護署, 1999.
[21] 張寶額, 特殊敏感區監測業務計畫; 行政院環境保護署, 2011.
[22] 慧群環境, 揮發性有機物稽查管制計畫; 行政院環境保護署, 2010.
[23] 張寶額, 運用紅外光遙測技術執行石化工業區污染監測計畫; 行政
院環境保護署, 1999.
[24] Helmig, D., Air analysis by gas chromatography. Journal of Chromatography A 1999, 843 (1–2), 129-146.
[25] Wang, J.-L.; Chang, C.-C.; Lee, K.-Z., In-line sampling with gas chromatography–mass spectrometry to monitor ambient volatile organic compounds. Journal of Chromatography A 2012, 1248 (0), 161-168.
[26] Su, Y.-C.; Liu, W.-T.; Liao, W.-C.; Chiang, S.-W.; Wang, J.-L., Full-range analysis of ambient volatile organic compounds by a new trapping method and gas chromatography/mass spectrometry. Journal of Chromatography A 2011, 1218 (34), 5733-5742.
[27] Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W., Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. International Journal of Mass Spectrometry and Ion Processes 1995, 149-150, 609-619.
[28] Lindinger, W.; Hansel, A.; Jordan, A., On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. International Journal of Mass Spectrometry and Ion Processes 1998, 173 (3), 191-241.
[29] Blake, R. S.; Monks, P. S.; Ellis, A. M., Proton-Transfer Reaction Mass Spectrometry. Chemical Reviews 2009, 109 (3), 861-896.
[30] Badjagbo, K.; SauvÈ, S.; Moore, S., Real-time continuous monitoring methods for airborne VOCs. TrAC Trends in Analytical Chemistry
2007, 26 (9), 931-940.
[31] KrÛl, S.; Zabiegala, B.; Namiesnik, J., Monitoring VOCs in
atmospheric air I. On-line gas analyzers. TrAC Trends in Analytical
Chemistry 2010, 29 (9), 1092-1100.
[32] Prazeller, P.; Palmer, P. T.; Boscaini, E.; Jobson, T.; Alexander, M.,
Proton transfer reaction ion trap mass spectrometer. Rapid
Communications in Mass Spectrometry 2003, 17 (14), 1593-1599.
[33] Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Herbig, J.; Mark, L.; Schottkowsky, R.; Seehauser, H.; Sulzer, P.; Mark, T. D., An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI-MS).
International Journal of Mass Spectrometry 2009, 286 (1), 32-38.
[34] Warneke, C.; de Gouw, J. A.; Kuster, W. C.; Goldan, P. D.; Fall, R., Validation of Atmospheric VOC Measurements by Proton-Transfer- Reaction Mass Spectrometry Using a Gas-Chromatographic Preseparation Method. Environmental Science & Technology 2003, 37
(11), 2494-2501.
[35] Lindinger, C.; Pollien, P.; Ali, S.; Yeretzian, C.; Blank, I.; Märk, T.,
Unambiguous Identification of Volatile Organic Compounds by Proton-Transfer Reaction Mass Spectrometry Coupled with GC/MS. Analytical Chemistry 2005, 77 (13), 4117-4124.
[36] Blake, R. S.; Whyte, C.; Hughes, C. O.; Ellis, A. M.; Monks, P. S., Demonstration of Proton-Transfer Reaction Time-of-Flight Mass Spectrometry for Real-Time Analysis of Trace Volatile Organic Compounds. Analytical Chemistry 2004, 76 (13), 3841-3845.
[37] Chang, C.-C.; OuYang, C.-F.; Wang, C.-H.; Chiang, S.-W.; Wang, J.-L., Validation of in-situ measurements of volatile organic compounds through flask sampling and gas chromatography/mass spectrometry
analysis. Atmospheric Environment 2010, 44 (10), 1301-1307.
38] Gioumousis, G.; Stevenson, D. P., Reactions of Gaseous Molecule Ions with Gaseous Molecules. V. Theory. The Journal of Chemical Physics
1958, 29 (2), 294-299.
[39] Su, T.; Bowers, M. T., Theory of ion-polar molecule collisions.
Comparison with experimental charge transfer reactions of rare gas ions to geometric isomers of difluorobenzene and dichloroethylene. The Journal of Chemical Physics 1973, 58 (7), 3027-3037.
[40] Su, T.; Chesnavich, W. J., Parametrization of the ion--polar molecule collision rate constant by trajectory calculations. The Journal of Chemical Physics 1982, 76 (10), 5183-5185.
[41] Španěl, P.; Pavlik, M.; Smith, D., Reactions of H3O+ and OH− ions with some organic molecules; applications to trace gas analysis in air. International Journal of Mass Spectrometry and Ion Processes 1995, 145 (3), 177-186.
[42] Spanel, P.; Smith, D., A selected ion flow tube study of the reactions of NO+ and O2+ ions with some organic molecules: The potential for trace gas analysis of air. The Journal of Chemical Physics 1996, 104 (5), 1893-1899.
[43] Spanel, P.; Smith, D., SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of alcohols. International Journal of Mass Spectrometry and Ion Processes 1997, 167–168 (0), 375-388.
[44] Španěl, P.; Ji, Y.; Smith, D., SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of aldehydes and ketones. International Journal of Mass Spectrometry and Ion Processes 1997, 165–166 (0), 25-37.
[45] Ŝpaněl, P.; Smith, D., SIFT studies of the reactions of H3O+, NO+ and O+2 with a series of volatile carboxylic acids and esters. International Journal of Mass Spectrometry and Ion Processes 1998, 172 (1–2), 137-147.
[46] Španěl, P.; Smith, D., Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with several amines and some other nitrogen-containing molecules. International Journal of Mass Spectrometry 1998, 176 (3), 203-211.
[47] Španěl, P.; Smith, D., Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with several aromatic and aliphatic hydrocarbons. International Journal of Mass Spectrometry 1998, 181 (1–3), 1-10.
[48] Španěl, P.; Smith, D., Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with some chloroalkanes and chloroalkenes. International Journal of Mass Spectrometry 1999, 184 (2–3), 175-181.
[49] Smith, D.; Diskin, A. M.; Ji, Y.; Španěl, P., Concurrent use of H3O+, NO+, and O2+ precursor ions for the detection and quantification of diverse trace gases in the presence of air and breath by selected ion-flow tube mass spectrometry. International Journal of Mass Spectrometry 2001, 209 (1), 81-97.
[50] Diskin, A. M.; Wang, T.; Smith, D.; Španěl, P., A selected ion flow tube (SIFT), study of the reactions of H3O+, NO+ and O2+ ions with a series of alkenes; in support of SIFT-MS. International Journal of Mass Spectrometry 2002, 218 (1), 87-101.
[51] Wang, T.; Španěl, P.; Smith, D., Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2+ with eleven C10H16 monoterpenes. International Journal of Mass Spectrometry 2003, 228 (1), 117-126.
[52] Wilson, P. F.; Freeman, C. G.; McEwan, M. J., Reactions of small hydrocarbons with H3O+, O2+ and NO+ ions. International Journal of
Mass Spectrometry 2003, 229 (3), 143-149.
[53] Wang, T.; Španěl, P.; Smith, D., A selected ion flow tube study of the
reactions of H3O+, NO+ and O2+• with some phenols, phenyl alcohols and cyclic carbonyl compounds in support of SIFT-MS and PTR-MS. International Journal of Mass Spectrometry 2004, 239 (2–3), 139-146.
[54] Ferguson, E. E.; Fehsenfeld, F. C.; Schmeltekopf, A. L., Flowing Afterglow Measurements of Ion-Neutral Reactions. In Advances in Atomic and Molecular Physics, Bates, D. R.; Immanuel, E., Eds. Academic Press: 1969; Vol. Volume 5, pp 1-56.
[55] Zhao, J.; Zhang, R., Proton transfer reaction rate constants between hydronium ion (H3O+) and volatile organic compounds. Atmospheric Environment 2004, 38 (14), 2177-2185.
[56] Cappellin, L.; Probst, M.; Limtrakul, J.; Biasioli, F.; Schuhfried, E.; Soukoulis, C.; Märk, T. D.; Gasperi, F., Proton transfer reaction rate coefficients between H3O+ and some sulphur compounds. International Journal of Mass Spectrometry 2010, 295 (1–2), 43-48.
[57] Karl, T.; Crutzen, P. J.; Mandl, M.; Staudinger, M.; Guenther, A.; Jordan, A.; Fall, R.; Lindinger, W., Variability-lifetime relationship of VOCs observed at the Sonnblick Observatory 1999--estimation of HO-densities. Atmospheric Environment 2001, 35 (31), 5287-5300.
[58] Warneke, C.; de Gouw, J. A., Organic trace gas composition of the marine boundary layer over the northwest Indian Ocean in April 2000. Atmospheric Environment 2001, 35 (34), 5923-5933.
[59] Hayward, S.; Hewitt, C. N.; Sartin, J. H.; Owen, S. M., Performance Characteristics and Applications of a Proton Transfer Reaction-Mass Spectrometer for Measuring Volatile Organic Compounds in Ambient Air. Environmental Science & Technology 2002, 36 (7), 1554-1560.
[60] Thomas Karl, T. J., William C. Kuster, Eric Williams, Jochen Stutz, Rick Shetter, Samuel R. Hall, Paul Goldan, Fred Fehsenfeld, and Werner Lindinger, Use of proton-transfer-reaction mass spectrometry to characterize volatile organic compound sources at the La Porte super site during the Texas Air Quality Study 2000. Journal of Geophysical Research 2003, 108, D164508.
[61] Jordan, C.; Fitz, E.; Hagan, T.; Sive, B.; Frinak, E.; Haase, K.; Cottrell, L.; Buckley, S.; Talbot, R., Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences. Atmos. Chem. Phys. 2009, 9 (14), 4677-4697.
[62] Salisbury, G.; Williams, J.; Holzinger, R.; Gros, V.; Mihalopoulos, N.; Vrekoussis, M.; Sarda-Estève, R.; Berresheim, H.; von Kuhlmann, R.; Lawrence, M.; Lelieveld, J., Ground-based PTR-MS measurements of reactive organic compounds during the MINOS campaign in Crete, July–August 2001. Atmos. Chem. Phys. 2003, 3 (4), 925-940.
[63] Inomata, S.; Tanimoto, H.; Kato, S.; Suthawaree, J.; Kanaya, Y.; Pochanart, P.; Liu, Y.; Wang, Z., PTR-MS measurements of non-methane volatile organic compounds during an intensive field campaign at the summit of Mount Tai, China, in June 2006. Atmos. Chem. Phys. 2010, 10 (15), 7085-7099.
[64] Ammann, C.; Spirig, C.; Neftel, A.; Steinbacher, M.; Komenda, M.; Schaub, A., Application of PTR-MS for measurements of biogenic VOC in a deciduous forest. International Journal of Mass Spectrometry 2004, 239 (2-3), 87-101.
[65] Karl, T.; Hansel, A.; Märk, T.; Lindinger, W.; Hoffmann, D., Trace gas monitoring at the Mauna Loa Baseline Observatory using Proton-Transfer Reaction Mass Spectrometry. International Journal of Mass Spectrometry 2003, 223–224 (0), 527-538.
[66] Wisthaler, A.; Hansel, A.; Dickerson, R. R.; Crutzen, P. J., Organic trace gas measurements by PTR-MS during INDOEX 1999. Journal of Geophysical Research: Atmospheres 2002, 107 (D19), 8024.
[67] Kalogridis, C.; Gros, V.; Sarda-Esteve, R.; Langford, B.; Loubet, B.; Bonsang, B.; Bonnaire, N.; Nemitz, E.; Genard, A. C.; Boissard, C.; Fernandez, C.; Ormeño, E.; Baisnée, D.; Reiter, I.; Lathière, J., Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest. Atmos. Chem. Phys. Discuss. 2014, 14 (1), 871-917.
[68] Park, J. H.; Goldstein, A. H.; Timkovsky, J.; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R., Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes. Atmos. Chem. Phys. 2013, 13 (3), 1439-1456.
[69] Müller, M.; Graus, M.; Ruuskanen, T. M.; Schnitzhofer, R.; Bamberger, I.; Kaser, L.; Titzmann, T.; Hörtnagl, L.; Wohlfahrt, G.; Karl, T.; Hansel, A., First eddy covariance flux measurements by PTR-TOF. Atmos. Meas. Tech. 2010, 3 (2), 387-395.
[70] Raga, G. B.; Baumgardner, D.; Castro, T.; MartÌnez-Arroyo, A.; Navarro-Gonz·lez, R., Mexico City air quality: a qualitative review of gas and aerosol measurements (1960-2000). Atmospheric Environment 2001, 35 (23), 4041-4058.
[71] Rogers, T. M.; Grimsrud, E. P.; Herndon, S. C.; Jayne, J. T.; Kolb, C. E.; Allwine, E.; Westberg, H.; Lamb, B. K.; Zavala, M.; Molina, L. T.; Molina, M. J.; Knighton, W. B., On-road measurements of volatile organic compounds in the Mexico City metropolitan area using proton transfer reaction mass spectrometry. International Journal of Mass Spectrometry 2006, 252 (1), 26-37.
[72] Zavala, M.; Herndon, S.; nbsp; C; Slott, R.; S; Dunlea, E.; J; Marr, L.;
Shorter, J.; H; Zahniser, M.; Knighton, W.; B; Rogers, T.; M; Kolb, C.; E; Molina, L.; T; Molina, M., Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign. Atmos. Chem. Phys. 2006, 6 (12), 5129-5142.
[73] E. Velasco; B. Lamb; H. Westberg; E. Allwine; G. Sosa; J. L. Arriaga-Colina; B. T. Jobson; M. L. Alexander; P. Prazeller; W. B. Knighton; T. M. Rogers; M. Grutter; S. C. Herndon; C. E. Kolb; M. Zavala; B. de Foy; R. Volkamer; L. T. Molina; Molina, M. J., Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns. Atmospheric Chemistry and Physics 2007, 7, 329-353.
[74] Kato, S.; Miyakawa, Y.; Kaneko, T.; Kajii, Y., Urban air measurements using PTR-MS in Tokyo area and comparison with GC-FID measurements. International Journal of Mass Spectrometry 2004, 235 (2), 103-110.
[75] Crutzen, P. J.; Williams, J.; Pˆschl, U.; Hoor, P.; Fischer, H.; Warneke, C.; Holzinger, R.; Hansel, A.; Lindinger, W.; Scheeren, B.; Lelieveld, J., High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam. Atmospheric Environment 2000, 34 (8), 1161-1165.
[76] Williams, J.; Pöschl, U.; Crutzen, P. J.; Hansel, A.; Holzinger, R.; Warneke, C.; Lindinger, W.; Lelieveld, J., An Atmospheric Chemistry Interpretation of Mass Scans Obtained from a Proton Transfer Mass Spectrometer Flown over the Tropical Rainforest of Surinam. Journal
of Atmospheric Chemistry 2001, 38 (2), 133-166.
[77] J. A. de Gouw, C. W., H. A. Scheeren, C. van der Veen, and M. Bolder,
Overview of the trace gas measurements on board the Citation aircraft during the intensive field phase of INDOEX. Journal of Geophysical Research 2001, 106, 28453-28467.
[78] D. Sprung, C. J., T. Reiner, A. Hansel, and A. Wisthaler, Acetone and acetonitrile in the tropical Indian Ocean boundary layer and free troposphere: Aircraft‐based intercomparison of AP‐CIMS and PTR‐MS
measurements. Journal of Geophysical Research 2001, 27,
28511-28527.
[79] B. P. Wert, M. T., A. Fried, T. B. Ryerson, B. Henry, W. Potter, W. M.
Angevine, E. Atlas, S. G. Donnelly, F. C. Fehsenfeld, G. J. Frost, P. D. Goldan, A. Hansel, J. S. Holloway, G. Hubler, W. C. Kuster, D. K. Nicks Jr., J. A. Neuman, D. D. Parrish, S. Schauffler, J. Stutz, D. T. Sueper, C. Wiedinmyer,and A. Wisthaler, Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000. Journal of Geophysical Research 2003, 108, D34104.
[80] Kolb, C. E.; Herndon, S. C.; McManus, J. B.; Shorter, J. H.; Zahniser, M. S.; Nelson, D. D.; Jayne, J. T.; Canagaratna, M. R.; Worsnop, D. R., Mobile Laboratory with Rapid Response Instruments for Real-Time Measurements of Urban and Regional Trace Gas and Particulate Distributions and Emission Source Characteristics. Environmental Science & Technology 2004, 38 (21), 5694-5703.
[81] Wang, M.; Zhu, T.; Zheng, J.; Zhang, R. Y.; Zhang, S. Q.; Xie, X. X.; Han, Y. Q.; Li, Y., Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics. Atmos. Chem. Phys. 2009, 9 (21), 8247-8263.
[82] Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). http://discover-aq.larc.nasa.gov/.
[83] Warneke, C.; van der Veen, C.; Luxembourg, S.; de Gouw, J. A.; Kok, A., Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: calibration, humidity dependence, and field intercomparison. International Journal of Mass Spectrometry 2001, 207 (3), 167-182.
[84] J. A. de Gouw, P. D. G., C. Warneke, W. C. Kuster, J. M. Roberts, M. Marchewka, S. B. Bertman, A. A. P. Pszenny, and W. C. Keene, Validation of proton transfer reaction‐mass spectrometry (PTR‐MS)
measurements of gas‐phase organic compounds in the atmosphere
during the New England Air Quality Study (NEAQS) in 2002. Journal
of Geophysical Research 2003, 108, 4682.
[85] Kuster, W. C.; Jobson, B. T.; Karl, T.; Riemer, D.; Apel, E.; Goldan, P.
D.; Fehsenfeld, F. C., Intercomparison of Volatile Organic Carbon Measurement Techniques and Data at La Porte during the TexAQS2000 Air Quality Study. Environmental Science & Technology 2003, 38 (1), 221-228.
[86] de Gouw, J.; Warneke, C.; Holzinger, R.; Kl ̧pfel, T.; Williams, J., Inter-comparison between airborne measurements of methanol, acetonitrile and acetone using two differently configured PTR-MS instruments. International Journal of Mass Spectrometry 2004, 239 (2-3), 129-137.
[87] J. A. de Gouw, C. W., A. Stohl, A. G. Wollny, C. A. Brock, O. R. Cooper, J. S. Holloway, M. Trainer, F. C. Fehsenfeld, E. L. Atlas, S. G. Donnelly, V. Stroud, and A. Lueb, Volatile organic compounds
composition of merged and aged forest fire plumes from Alaska and western Canada Journal of Geophysical Research 2006, 111, D10303.
[88] de Gouw, J.; Warneke, C., Measurements of volatile organic compounds in the earth′s atmosphere using proton-transfer-reaction
mass spectrometry. Mass Spectrometry Reviews 2007, 26 (2), 223-257.
[89] T. Karl, E. A., A. Hodzic, D. D. Riemer, D. R. Blake, and C. Wiedinmyer, Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity. Atmospheric Chemistry
and Physics 2009, 9, 271-285.
[90] Ambrose, J. L.; Haase, K.; Russo, R. S.; Zhou, Y.; White, M. L.; Frinak,
E. K.; Jordan, C.; Mayne, H. R.; Talbot, R.; Sive, B. C., A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading. Atmos. Meas. Tech. 2010, 3 (4), 959-980.
[91] Zhou, L.; Zeng, Y.; Hazlett, P. D.; Matherne, V., Ambient air monitoring with Auto-gas chromatography running in trigger mode. Analytica Chimica Acta 2007, 596 (1), 156-163.
[92] Kaser, L.; Karl, T.; Schnitzhofer, R.; Graus, M.; Herdlinger-Blatt, I. S.; DiGangi, J. P.; Sive, B.; Turnipseed, A.; Hornbrook, R. S.; Zheng, W.; Flocke, F. M.; Guenther, A.; Keutsch, F. N.; Apel, E.; Hansel, A., Comparison of different real time VOC measurement techniques in a ponderosa pine forest. Atmos. Chem. Phys. 2013, 13 (5), 2893-2906.
[93] Aurell, J.; Gullett, B. K., Aerostat Sampling of PCDD/PCDF Emissions from the Gulf Oil Spill In Situ Burns. Environmental Science & Technology 2010, 44 (24), 9431-9437.
[94] Baker, A. K.; Slemr, F.; Brenninkmeijer, C. A. M., Analysis of non-methane hydrocarbons in air samples collected aboard the CARIBIC passenger aircraft. Atmos. Meas. Tech. 2010, 3 (1), 311-321.
[95] Toscano, P.; Gioli, B.; Dugheri, S.; Salvini, A.; Matese, A.; Bonacchi, A.; Zaldei, A.; Cupelli, V.; Miglietta, F., Locating industrial VOC sources with aircraft observations. Environmental Pollution 2011, 159 (5), 1174-1182.
[96] Wyche, K. P.; Blake, R. S.; Willis, K. A.; Monks, P. S.; Ellis, A. M., Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry. Rapid Communications in Mass Spectrometry 2005, 19 (22), 3356-3362.
[97] Ennis, C. J.; Reynolds, J. C.; Keely, B. J.; Carpenter, L. J., A hollow cathode proton transfer reaction time of flight mass spectrometer. International Journal of Mass Spectrometry 2005, 247 (1–3), 72-80.
[98] Inomata, S.; Tanimoto, H.; Aoki, N.; Hirokawa, J.; Sadanaga, Y., A novel discharge source of hydronium ions for proton transfer reaction ionization: design, characterization, and performance. Rapid Communications in Mass Spectrometry 2006, 20 (6), 1025-1029.
[99] Tanimoto, H.; Aoki, N.; Inomata, S.; Hirokawa, J.; Sadanaga, Y., Development of a PTR-TOFMS instrument for real-time measurements of volatile organic compounds in air. International Journal of Mass Spectrometry 2007, 263 (1), 1-11.
[100] Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Maerk, L.; Seehauser, H.; Schottkowsky, R.; Sulzer, P.; Maerk, T. D., A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int. J. Mass Spectrom. 2009, 286 (2-3), 122-128.
[101] Lindinger, W.; Jordan, A., Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chemical Society Reviews 1998, 27 (5), 347-375.
[102] Graus, M.; Müller, M.; Hansel, A., High Resolution PTR-TOF: Quantification and Formula Confirmation of VOC in Real Time. Journal of the American Society for Mass Spectrometry 2010, 21 (6),
1037-1044.
[103] O′Keeffe, A. E.; Ortman, G. C., Primary Standards for Trace Gas
Analysis. Analytical Chemistry 1966, 38 (6), 760-763.
[104] Mitchell, G. D., A REVIEW OF PERMEATION TUBES AND PERMEATORS. Separation & Purification Reviews 2000, 29 (1),
119-128.
[105] 顏敬秦, 以滲透管法製備 OVOC 標準氣體並應用於線上檢量; 國
立中央大學, 2011.
[106] Standard Operating Procedures for Sulfur Dioxide (SO2) Monitoring by Ultraviolet Fluorescence
https://dec.alaska.gov/air/am/SO2_SOP_13feb12.pdf.
[107] Wang, J.-L.; Chen, S.-W.; Chew, C., Automated gas chromatography with cryogenic/sorbent trap for the measurement of volatile organic compounds in the atmosphere. Journal of Chromatography A 1999, 863
(2), 183-193.
[108] Wang, J.-L.; Din, G.-Z.; Chan, C.-C., Validation of a
laboratory-constructed automated gas chromatograph for the measurement of ozone precursors through comparison with a commercial analogy. Journal of Chromatography A 2004, 1027 (1–2), 11-18.
[109] Su, Y.-C.; Chang, C.-C.; Wang, J.-L., Construction of an automated gas chromatography/mass spectrometry system for the analysis of ambient volatile organic compounds with on-line internal standard calibration. Journal of Chromatography A 2008, 1201 (2), 134-140.
[110] 范綱捷, 氣相層析線上數據擷取共同平台之開發與測試; 國立中央 大學, 2013.
[111] 廖千宜, 多孔材料吸附特性研究與氣體線上校正方法探討; 國立中 央大學, 2009.
[112] Wang, K. Y.; Wang, J. L.; Liu, W. T., Ambient carbon dioxide concentrations in industrial park areas: A monitoring and modeling study. Atmospheric Pollution Research 2014, 5 (2), 179-188.
[113] Chen, S.-P., Liu, Tsun-Hsien, Chen, Tu-Fu, Yang, Chang-Feng Ou, Wang, Jia-Lin, Chang, Julius S., Diagnostic Modeling of PAMS VOC Observation. Environmental Science & Technology 2010, 44 (12), 4635-4644.
[114] Stockwell, W. R.; Middleton, P.; Chang, J. S.; Tang, X., The second generation regional acid deposition model chemical mechanism for regional air quality modeling. Journal of Geophysical Research: Atmospheres 1990, 95 (D10), 16343-16367.
[115] Wang, K.-Y.; Liao, S.-A., Lightning, radar reflectivity, infrared brightness temperature, and surface rainfall during the 2–4 July 2004 severe convective system over Taiwan area. Journal of Geophysical Research: Atmospheres 2006, 111 (D5), D05206.
[116] Tong, Y.-H.; Yang, K.-P.; Chen, S.-P.; Chiu, C.-J., Analysis of SO2 and NOx transport flux around a coastal industrial complex in western Taiwan; 0013-936X; Aug, 2014, 2014.
[117] Chen, S.-P.; Liao, W.-C.; Chang, C.-C.; Su, Y.-C.; Tong, Y.-H.; Chang, J. S.; Wang, J.-L., Network monitoring of speciated vs. total non-methane hydrocarbon measurements. Atmospheric Environment 2014, 90 (0), 33-42.
[118] Hansel, A.; Singer, W.; Wisthaler, A.; Schwarzmann, M.; Lindinger, W., Energy dependencies of the proton transfer reactions H3O+ + CH2O ⇎ CH2OH+ + H2O. International Journal of Mass Spectrometry and Ion
Processes 1997, 167–168 (0), 697-703.
[119] Stull, R. B., Boundary Layer Meteorology. Kluwer Academic Publishers: 1988.
[120] Carlier, P.; Hannachi, H.; Mouvier, G., The chemistry of carbonyl compounds in the atmosphere—A review. Atmospheric Environment (1967) 1986, 20 (11), 2079-2099.
[121] Singh, H. B.; O′Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J., Acetone in the atmosphere: Distribution, sources, and sinks. Journal of Geophysical Research: Atmospheres 1994, 99 (D1), 1805-1819.
[122] Goldan, P. D.; Trainer, M.; Kuster, W. C.; Parrish, D. D.; Carpenter, J.; Roberts, J. M.; Yee, J. E.; Fehsenfeld, F. C., Measurements of hydrocarbons, oxygenated hydrocarbons, carbon monoxide, and nitrogen oxides in an urban basin in Colorado: Implications for emission inventories. Journal of Geophysical Research: Atmospheres 1995, 100 (D11), 22771-22783.
[123] Jacob, D. J.; Field, B. D.; Jin, E. M.; Bey, I.; Li, Q.; Logan, J. A.; Yantosca, R. M.; Singh, H. B., Atmospheric budget of acetone. Journal of Geophysical Research: Atmospheres 2002, 107 (D10), ACH 5-1-ACH 5-17.
[124] Singh, H.; Chen, Y.; Staudt, A.; Jacob, D.; Blake, D.; Heikes, B.; Snow, J., Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature 2001, 410 (6832), 1078-1081.
[125] 施志恆、廖啟元、黃昱勝、呂旻倫, 宜蘭縣 100 年度工業區空氣污
染事件監測及緊急應變計畫; 宜蘭縣政府環境保護局, 2011.
[126] Nagata, Y., Odor intensity and odor threshold value. Environment Sanitation Center 2003a, 9.
指導教授 王家麟(Jia-lin Wang) 審核日期 2015-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明