博碩士論文 982404007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:54.163.213.149
姓名 邱偉倫(Wei-Lun Chou)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 水稻CAF1同源性基因功能性分析
(Functional analysis of CAF1 homologs in rice)
相關論文
★ 水稻CAF1基因之功能分析-水稻CAF1基因的選殖、定性及表現★ 水稻OsDEADl-1基因的功能性探討
★ 利用水稻細胞之懸浮培養建立蛋白質高效率分泌系統★ 水稻CCR4基因之功能分析- 水稻CCR4基因的選殖、定性及表現
★ 阿拉伯芥 AtMYBS 基因功能性探討★ 水稻OsMYBS2基因的功能性分析
★ 水稻CCR4基因的功能分析- 繁衍大量表現和靜默表現的基因轉殖水稻★ 水稻OsVALs基因的功能性分析- 水稻OsVALs基因的選殖、定性及表現
★ 分析水稻T-DNA插入突變株: M0022150, M0023563, M0023580, M0037352及M0032079★ 以水稻懸浮培養細胞蛋白質生產系統生產mGMCSF
★ 建立表現耐熱澱粉普魯南糖酶基因之轉植甘藷★ 阿拉伯芥AtMYBSs基因參與在糖訊息及離層酸訊息傳遞之研究
★ I. II.★ 探討αAmy3、OsCIN1與Os33KD信號肽在水稻懸浮培養細胞中的功能及特性
★ 水稻CAF1基因在水稻懸浮培養細胞之研究★ 探討阿拉伯芥兩個MYB-related轉錄因子在糖訊息傳遞中所扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 溫室效應導致了全球各地出現極端氣候,如極端溫度、暴雨和乾旱等諸多環境逆境,這些逆境已嚴重影響農作物的存活率及產量,農作物中如水稻皆為固著性生物,因此了解植物如何抵抗逆境,並加以提高逆境耐受能力為改良作物生存率和提高產量的重要方向之一。一般而言,植物在面對逆境時,內部快速的基因調控影響了後續諸多蛋白的表達,為適應及對抗逆境的重要關鍵,而基因調控可初步分為轉錄階層與後轉錄階層,針對轉錄階層如轉錄因子如何決定植物在逆境時的生存策略已有許多研究,後轉錄階層則是相對較少,本篇文章即是以後轉錄調控裡mRNA降解的初始步驟-deadenylation (Poly(A) tail的分解)為研究主題。
酵母菌以及哺乳類研究已指明Poly(A) tail的降解主要由CCR4-NOT1複合體中的CAF1以及CCR4所負責,且在生化與分生的基礎研究上提出了許多嚴謹的機制,說明這些酵素藉由影響Poly(A) tail的長度,改變了mRNA的穩定度,使mRNA走向降解的途徑或使轉譯效率降低,導致標的蛋白產量下降而改變了細胞原有的表型。目前在植物的研究裡,我們雖然得知CCR4和CAF1的表現量會影響逆境下的表型,但相關機制不若酵母菌和人類明朗,本篇文章以水稻CAF1和CCR4為主,探討以下有趣的發現:一、同為複合體的一員且具有酵素活性,植物CAF1相較於CCR4演化出較多的同源性基因,且CAF1成員之間在胺基酸的相似度上有較高的差異性。二、植物CCR4缺乏其他物種所包含的LRR domain但演化出Mynd domain,使其可以和CAF1結合。三、正常環境下,只有水稻CAF1B-GFP會出現在細胞降解mRNA的P-bodies結構中,然而後續發現CAF1H-GFP在受熱後也會出現顆粒狀結構。四、不同CAF1成員在環境逆境下有不同的表達量,如只有CAF1H在受熱時的表現模式與熱休克蛋白類似。五、在實驗設計的熱處理下,CAF1H會影響水稻幼苗的生長。這些發現使我們了解水稻CAF1成員雖皆有相同酵素活性,但對環境逆境可能有不同作用機制,並據此假設水稻CAF1H在熱逆境時,會結合其他熱誘導的mRNA結合蛋白質,進而出現在P-bodies中,惟CAF1H的酵素活性是否發揮作用和其作用階段、標的基因有哪些仍有待未來研究。
摘要(英) The greenhouse effect has led to extreme climate around the world, such as extreme temperatures, heavy rain, drought and so on. These severe environmental conditions have seriously affected the survival and yield of crops. Understanding how crops like rice are resistant to environmental stresses is one of the important directions for improving survival and yields under different types of stresses. In general, rapid gene regulation affecting the subsequent protein production is one of important strategy to adapt and against environmental stresses in plants. Moreover, gene regulation can be preliminarily classified into transcriptional level and post-transcriptional level. In transcriptional level, for example, many studies have determined mechanisms how transcription factors affect stress tolerances. However, in contrast to transcriptional level, mechanisms of plants in post-transcriptional level is not well known. Thus, our subject of this article focuses on the mechanism of deadenylation, an initial step of mRNA turnover, in rice.
Studies in yeasts and mammals have indicated the deadenylation is mainly mediated by subunits of CCR4-NOT1 complex, CCR4 and CAF1. Also, it’s thought these deadenylation enzymes affects mRNA stability via poly(A) tail shortening, leading mRNA turnover or reducing translation efficiency. Although in plants, it has been proven that CCR4 and CAF1 affect the stress tolerance, related mechanisms aren’t clear. In this article, we provide some interesting findings as follows. First, not like its partner CCR4, the expansion of CAF1 homologs are distinct in rice. Among these rice CAF1 members, the divergence of protein sequences is obvious. Second, plant CCR4 members lacking LRR domain contain Mynd domain to interact with CAF1 in evolution. Third, only CAF1B-GFP located in P-bodies under normal condition, but CAF1H-GFP also aggregated as granule structures under heat stress. Fourth, expression patterns of each CAF1 member are divergent under different types of treatment. For example, only CAF1H expression is induced as well as small Hsps under heat stress. Fifth, CAF1H affected heat tolerance and seedling growth under heat stress in our experimental condition. These findings promote us a model which supposes CAF1H is recruited to P-bodies by other heat-induced mRNA binding proteins under heat stress. However, it should be further examined whether the function of CAF1H is involved in deadenylation and which genes are targets.
關鍵字(中) ★ 水稻
★ 去腺嘌呤酵素
★ 熱逆境
關鍵字(英) ★ rice
★ deadenylase
★ heat stress
論文目次 摘要..........................................................................................................................................................................i
Abstract ..................................................................................................................................................................ii
致謝........................................................................................................................................................................iii
Table of contents ...................................................................................................................................................iv
List of figures ......................................................................................................................................................... v
List of supplementary figures..............................................................................................................................vi
List of tables.........................................................................................................................................................vii
Chapter I Introduction.......................................................................................................................................... 1
The role of deadenylation in cytoplasmic mRNA turnover ................................................................................ 2
The integrity of nuclease module is required for effective deadenylation .......................................................... 4
Which one is more important, CCR4 or CAF1?................................................................................................. 6
Deadenylation affect P-bodies formation in human cells ................................................................................... 8
Studies of CCR4 and CAF1 in Arabidopsis thaliana ........................................................................................ 11
Our study in rice CAF1 homologs.................................................................................................................... 12
Chapter II Materials and Methods .................................................................................................................... 15
Plant materials, growth conditions and stress treatments ................................................................................. 16
Gene expression analysis.................................................................................................................................. 17
Identification of plant CAF1, CCR4 and NOT1 homologs .............................................................................. 17
Promoter sequences analysis ............................................................................................................................ 18
Plasmids constructions...................................................................................................................................... 19
Protein expression and purification .................................................................................................................. 20
In vitro deadenylase assay ................................................................................................................................ 21
Subcellular localization analysis using onion bulb epidermises ....................................................................... 21
Bimolecular fluorescence complementation (BiFC) analysis........................................................................... 22
Yeast two-hybrid analysis and β-galactosidase activity assay .......................................................................... 22
Chapter III Results.............................................................................................................................................. 24
Identification of CAF1 and CCR4 homologs in rice ........................................................................................ 25
Recombinant rice CAF1 proteins contain deadenylase activities in vitro ........................................................ 27
Rice CCR4 lacking the LRR domain can interact with CAF1 members except CAF1B ................................. 29
The Mynd-like domain within rice CCR4 family is required for the interaction with CAF1 ........................... 30
The specific fragment of CAF1 interact with the Mynd-like domain............................................................... 31
The C-terminal region of rice CCR4 members disrupts the protein interaction with CAF1B ........................ 32
Rice CAF1 interacts with the MIF4G domain of NOT1 .................................................................................. 33
Differential subcellular localizations of rice CAF1 members in onion epidermal cells ................................... 34
CAF1B is localized to P-bodies and microtubules ........................................................................................... 35
Expression patterns of rice CAF1 members under different types of stress are unique.................................... 35
Knockdown of CAF1H expression delayed the growth of seedlings under heat stress .................................... 37
Strategy to identify targeted genes via global gene expression analysis........................................................... 39
Chapter IV Discussion......................................................................................................................................... 41
The expansion of rice CAF1 family ................................................................................................................. 42
Candidate RNA binding proteins recruiting the CCR4-NOT1 complex........................................................... 43
Rice CAF1 may participate in nuclear RNA quality control together with the Tramp complex in the nucleus 47
Is deadenylation required for P-bodies formations in rice? .............................................................................. 48
Special characteristics of rice CAF1B .............................................................................................................. 51
Future works to identify the physiological role of CAF1H under heat stress ................................................... 53
Reference.............................................................................................................................................................. 55
參考文獻 1. Belostotsky DA, Sieburth LE: Kill the messenger: mRNA decay and plant
development. Curr Opin Plant Biol 2009, 12(1):96-102.
2. Floris M, Mahgoub H, Lanet E, Robaglia C, Menand B: Post-transcriptional regulation
of gene expression in plants during abiotic stress. Int J Mol Sci 2009, 10(7):3168-
3185.
3. Rayson S, Arciga-Reyes L, Wootton L, De Torres Zabala M, Truman W, Graham N,
Grant M, Davies B: A role for nonsense-mediated mRNA decay in plants: pathogen
responses are induced in Arabidopsis thaliana NMD mutants. PLoS One 2012,
7(2):e31917.
4. Yamashita Y, Lambein I, Kobayashi S, Onouchi H, Chiba Y, Naito S: A halt in poly(A)
shortening during S-adenosyl-L-methionine-induced translation arrest in CGS1
mRNA of Arabidopsis thaliana. Genes Genet Syst 2013, 88(4):241-249.
5. Alberts BJ, A.; Lewis, J.; Raff, M.; Roberts, K. and Walter, P.: Molecular Biology of the
Cell; 2002.
6. Garneau NL, Wilusz J, Wilusz CJ: The highways and byways of mRNA decay. Nat Rev
Mol Cell Biol 2007, 8(2):113-126.
7. Parker R: RNA degradation in Saccharomyces cerevisae. Genetics 2012, 191(3):671-
702.
8. Meyer S, Temme C, Wahle E: Messenger RNA turnover in eukaryotes: pathways and
enzymes. Crit Rev Biochem Mol Biol 2004, 39(4):197-216.
9. Parker R, Sheth U: P bodies and the control of mRNA translation and degradation.
Mol Cell 2007, 25(5):635-646.
10. Wahle E, Winkler GS: RNA decay machines: deadenylation by the Ccr4-not and
Pan2-Pan3 complexes. Biochim Biophys Acta 2013, 1829(6-7):561-570.
11. Caponigro G, Parker R: Multiple functions for the poly(A)-binding protein in mRNA
decapping and deadenylation in yeast. Genes Dev 1995, 9(19):2421-2432.
12. Tharun S, Parker R: Targeting an mRNA for decapping: displacement of translation
factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs.
Mol Cell 2001, 8(5):1075-1083.
13. Boeck R, Tarun S, Jr., Rieger M, Deardorff JA, Muller-Auer S, Sachs AB: The yeast Pan2
protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity.
J Biol Chem 1996, 271(1):432-438.
14. Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R: The
transcription factor associated Ccr4 and Caf1 proteins are components of the major
cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 2001, 104(3):377-
386.
15. Chen J, Chiang YC, Denis CL: CCR4, a 3′-5′ poly(A) RNA and ssDNA exonuclease, is the56
catalytic component of the cytoplasmic deadenylase. EMBO J 2002, 21(6):1414-
1426.
16. Parker R, Song H: The enzymes and control of eukaryotic mRNA turnover. Nat Struct
Mol Biol 2004, 11(2):121-127.
17. Draper MP, Salvadore C, Denis CL: Identification of a mouse protein whose homolog
in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory
complex. Mol Cell Biol 1995, 15(7):3487-3495.
18. Albert TK, Lemaire M, van Berkum NL, Gentz R, Collart MA, Timmers HT: Isolation and
characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic
Acids Res 2000, 28(3):809-817.
19. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM,
Michon AM, Cruciat CM et al: Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature 2002, 415(6868):141-147.
20. Collart MA, Panasenko OO: The Ccr4--not complex. Gene 2012, 492(1):42-53.
21. Miller JE, Reese JC: Ccr4-Not complex: the control freak of eukaryotic cells. Crit Rev
Biochem Mol Biol 2012, 47(4):315-333.
22. Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F,
Jinek M, Wohlschlegel J, Doudna JA et al: Mammalian miRNA RISC recruits CAF1 and
PABP to affect PABP-dependent deadenylation. Mol Cell 2009, 35(6):868-880.
23. Piao X, Zhang X, Wu L, Belasco JG: CCR4-NOT deadenylates mRNA associated with
RNA-induced silencing complexes in human cells. Mol Cell Biol 2010, 30(6):1486-
1494.
24. Xu K, Bai Y, Zhang A, Zhang Q, Bartlam MG: Insights into the structure and
architecture of the CCR4-NOT complex. Front Genet 2014, 5:137.
25. Tritschler F, Huntzinger E, Izaurralde E: Role of GW182 proteins and PABPC1 in the
miRNA pathway: a sense of deja vu. Nat Rev Mol Cell Biol 2010, 11(5):379-384.
26. Bai Y, Salvadore C, Chiang YC, Collart MA, Liu HY, Denis CL: The CCR4 and CAF1
proteins of the CCR4-NOT complex are physically and functionally separated from
NOT2, NOT4, and NOT5. Mol Cell Biol 1999, 19(10):6642-6651.
27. Maillet L, Tu C, Hong YK, Shuster EO, Collart MA: The essential function of Not1 lies
within the Ccr4-Not complex. J Mol Biol 2000, 303(2):131-143.
28. Basquin J, Roudko VV, Rode M, Basquin C, Seraphin B, Conti E: Architecture of the
nuclease module of the yeast Ccr4-not complex: the Not1-Caf1-Ccr4 interaction.
Mol Cell 2012, 48(2):207-218.
29. Mittal S, Aslam A, Doidge R, Medica R, Winkler GS: The Ccr4a (CNOT6) and Ccr4b
(CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the
prevention of cell death and senescence. Mol Biol Cell 2011, 22(6):748-758.
30. Petit AP, Wohlbold L, Bawankar P, Huntzinger E, Schmidt S, Izaurralde E,57
Weichenrieder O: The structural basis for the interaction between the CAF1
nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex.
Nucleic Acids Res 2012, 40(21):11058-11072.
31. Sandler H, Kreth J, Timmers HT, Stoecklin G: Not1 mediates recruitment of the
deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic
Acids Res 2011, 39(10):4373-4386.
32. Fabian MR, Frank F, Rouya C, Siddiqui N, Lai WS, Karetnikov A, Blackshear PJ, Nagar B,
Sonenberg N: Structural basis for the recruitment of the human CCR4-NOT
deadenylase complex by tristetraprolin. Nat Struct Mol Biol 2013, 20(6):735-739.
33. Denis CL: Identification of new genes involved in the regulation of yeast alcohol
dehydrogenase II. Genetics 1984, 108(4):833-844.
34. Wang H, Morita M, Yang X, Suzuki T, Yang W, Wang J, Ito K, Wang Q, Zhao C, Bartlam
M et al: Crystal structure of the human CNOT6L nuclease domain reveals strict
poly(A) substrate specificity. EMBO J 2010, 29(15):2566-2576.
35. Rorbach J, Nicholls TJ, Minczuk M: PDE12 removes mitochondrial RNA poly(A) tails
and controls translation in human mitochondria. Nucleic Acids Res 2011,
39(17):7750-7763.
36. Sakai A, Chibazakura T, Shimizu Y, Hishinuma F: Molecular analysis of POP2 gene, a
gene required for glucose-derepression of gene expression in Saccharomyces
cerevisiae. Nucleic Acids Res 1992, 20(23):6227-6233.
37. Jonstrup AT, Andersen KR, Van LB, Brodersen DE: The 1.4-A crystal structure of the S.
pombe Pop2p deadenylase subunit unveils the configuration of an active enzyme.
Nucleic Acids Res 2007, 35(9):3153-3164.
38. Andersen KR, Jonstrup AT, Van LB, Brodersen DE: The activity and selectivity of
fission yeast Pop2p are affected by a high affinity for Zn2+ and Mn2+ in the active
site. RNA 2009, 15(5):850-861.
39. Horiuchi M, Takeuchi K, Noda N, Muroya N, Suzuki T, Nakamura T, Kawamura-Tsuzuku
J, Takahasi K, Yamamoto T, Inagaki F: Structural basis for the antiproliferative activity
of the Tob-hCaf1 complex. J Biol Chem 2009, 284(19):13244-13255.
40. Tucker M, Staples RR, Valencia-Sanchez MA, Muhlrad D, Parker R: Ccr4p is the
catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in
Saccharomyces cerevisiae. EMBO J 2002, 21(6):1427-1436.
41. Ohn T, Chiang YC, Lee DJ, Yao G, Zhang C, Denis CL: CAF1 plays an important role in
mRNA deadenylation separate from its contact to CCR4. Nucleic Acids Res 2007,
35(9):3002-3015.
42. Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB: Concerted
action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover.
Nat Struct Mol Biol 2005, 12(12):1054-1063.58
43. Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I, Tsujimoto M, Suzuki T,
Katada T, Hoshino S: Mechanism of mRNA deadenylation: evidence for a molecular
interplay between translation termination factor eRF3 and mRNA deadenylases.
Genes Dev 2007, 21(23):3135-3148.
44. Morita M, Suzuki T, Nakamura T, Yokoyama K, Miyasaka T, Yamamoto T: Depletion of
mammalian CCR4b deadenylase triggers elevation of the p27Kip1 mRNA level and
impairs cell growth. Mol Cell Biol 2007, 27(13):4980-4990.
45. Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, Clayton C: A role for Caf1 in
mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res
2008, 36(10):3374-3388.
46. Zheng D, Ezzeddine N, Chen CY, Zhu W, He X, Shyu AB: Deadenylation is prerequisite
for P-body formation and mRNA decay in mammalian cells. J Cell Biol 2008,
182(1):89-101.
47. Aslam A, Mittal S, Koch F, Andrau JC, Winkler GS: The Ccr4-NOT deadenylase subunits
CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Mol Biol
Cell 2009, 20(17):3840-3850.
48. Temme C, Zaessinger S, Meyer S, Simonelig M, Wahle E: A complex containing the
CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J
2004, 23(14):2862-2871.
49. Molin L, Puisieux A: C. elegans homologue of the Caf1 gene, which encodes a
subunit of the CCR4-NOT complex, is essential for embryonic and larval
development and for meiotic progression. Gene 2005, 358:73-81.
50. Anderson P, Kedersha N: RNA granules. J Cell Biol 2006, 172(6):803-808.
51. Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E: P-body formation is a
consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 2007,
27(11):3970-3981.
52. Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD: A mouse
cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates.
J Cell Biol 1997, 136(4):761-773.
53. Sheth U, Parker R: Decapping and decay of messenger RNA occur in cytoplasmic
processing bodies. Science 2003, 300(5620):805-808.
54. Eystathioy T, Jakymiw A, Chan EK, Seraphin B, Cougot N, Fritzler MJ: The GW182
protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in
cytoplasmic GW bodies. RNA 2003, 9(10):1171-1173.
55. Andrei MA, Ingelfinger D, Heintzmann R, Achsel T, Rivera-Pomar R, Luhrmann R: A
role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing
bodies. RNA 2005, 11(5):717-727.
56. Ferraiuolo MA, Basak S, Dostie J, Murray EL, Schoenberg DR, Sonenberg N: A role for59
the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J Cell Biol
2005, 170(6):913-924.
57. Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J: Multiple processing body
factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 2005,
20(6):905-915.
58. Unterholzner L, Izaurralde E: SMG7 acts as a molecular link between mRNA
surveillance and mRNA decay. Mol Cell 2004, 16(4):587-596.
59. Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R: Processing bodies
require RNA for assembly and contain nontranslating mRNAs. RNA 2005, 11(4):371-
382.
60. Bruno I, Wilkinson MF: P-bodies react to stress and nonsense. Cell 2006,
125(6):1036-1038.
61. Weber C, Nover L, Fauth M: Plant stress granules and mRNA processing bodies are
distinct from heat stress granules. Plant J 2008, 56(4):517-530.
62. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ,
Scheuner D, Kaufman RJ, Golan DE, Anderson P: Stress granules and processing
bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005,
169(6):871-884.
63. Anderson P, Kedersha N: Stress granules: the Tao of RNA triage. Trends Biochem Sci
2008, 33(3):141-150.
64. Buchan JR, Muhlrad D, Parker R: P bodies promote stress granule assembly in
Saccharomyces cerevisiae. J Cell Biol 2008, 183(3):441-455.
65. Pomeranz MC, Hah C, Lin PC, Kang SG, Finer JJ, Blackshear PJ, Jang JC: The
Arabidopsis tandem zinc finger protein AtTZF1 traffics between the nucleus and
cytoplasmic foci and binds both DNA and RNA. Plant Physiol 2010, 152(1):151-165.
66. Moreno AB, Martinez de Alba AE, Bardou F, Crespi MD, Vaucheret H, Maizel A,
Mallory AC: Cytoplasmic and nuclear quality control and turnover of single-stranded
RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Res 2013,
41(8):4699-4708.
67. Sarowar S, Oh HW, Cho HS, Baek KH, Seong ES, Joung YH, Choi GJ, Lee S, Choi D:
Capsicum annuum CCR4-associated factor CaCAF1 is necessary for plant
development and defence response. Plant J 2007, 51(5):792-802.
68. Liang W, Li C, Liu F, Jiang H, Li S, Sun J, Wu X, Li C: The Arabidopsis homologs of CCR4-
associated factor 1 show mRNA deadenylation activity and play a role in plant
defence responses. Cell Res 2009, 19(3):307-316.
69. Walley JW, Kelley DR, Nestorova G, Hirschberg DL, Dehesh K: Arabidopsis
deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in
mediating environmental stress responses. Plant Physiol 2010, 152(2):866-875.60
70. Walley JW, Kelley DR, Savchenko T, Dehesh K: Investigating the function of CAF1
deadenylases during plant stress responses. Plant Signal Behav 2010, 5(7):802-805.
71. Suzuki Y, Arae T, Green PJ, Yamaguchi J, Chiba Y: AtCCR4a and AtCCR4b are Involved
in Determining the Poly(A) Length of Granule-bound starch synthase 1 Transcript
and Modulating Sucrose and Starch Metabolism in Arabidopsis thaliana. Plant Cell
Physiol 2015, 56(5):863-874.
72. Dupressoir A, Morel AP, Barbot W, Loireau MP, Corbo L, Heidmann T: Identification of
four families of yCCR4- and Mg2+-dependent endonuclease-related proteins in
higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved
leucine-rich repeat essential for hCAF1/hPOP2 binding. BMC Genomics 2001, 2:9.
73. Teixeira D, Parker R: Analysis of P-body assembly in Saccharomyces cerevisiae. Mol
Biol Cell 2007, 18(6):2274-2287.
74. Ho S, Chao Y, Tong W, Yu S: Sugar coordinately and differentially regulates growthand stress-related gene expression via a complex signal transduction network and
multiple control mechanisms. Plant Physiol 2001, 125(2):877-890.
75. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular
evolutionary genetics analysis using maximum likelihood, evolutionary distance,
and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
76. Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A: Heat shock factor gene family in
rice: genomic organization and transcript expression profiling in response to high
temperature, low temperature and oxidative stresses. Plant Physiol Biochem 2009,
47(9):785-795.
77. Curtis MD, Grossniklaus U: A gateway cloning vector set for high-throughput
functional analysis of genes in planta. Plant Physiol 2003, 133(2):462-469.
78. Brand L, Horler M, Nuesch E, Vassalli S, Barrell P, Yang W, Jefferson RA, Grossniklaus
U, Curtis MD: A versatile and reliable two-component system for tissue-specific
gene induction in Arabidopsis. Plant Physiol 2006, 141(4):1194-1204.
79. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS: Gatewaycompatible vectors for plant functional genomics and proteomics. Plant J 2006,
45(4):616-629.
80. Feddersen A, Dedic E, Poulsen EG, Schmid M, Van LB, Jensen TH, Brodersen DE:
Saccharomyces cerevisiae Ngl3p is an active 3′-5′ exonuclease with a specificity
towards poly-A RNA reminiscent of cellular deadenylases. Nucleic Acids Res 2012,
40(2):837-846.
81. Rio DC, Ares M, Jr., Hannon GJ, Nilsen TW: Polyacrylamide gel electrophoresis of
RNA. Cold Spring Harb Protoc 2010, 2010(6):pdb prot5444.
82. Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS: Model system for plant cell biology:
GFP imaging in living onion epidermal cells. Biotechniques 1999, 26(6):1125, 1128-61
1132.
83. Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D et al: A highly
efficient rice green tissue protoplast system for transient gene expression and
studying light/chloroplast-related processes. Plant Methods 2011, 7(1):30.
84. Gietz D, St Jean A, Woods RA, Schiestl RH: Improved method for high efficiency
transformation of intact yeast cells. Nucleic Acids Res 1992, 20(6):1425.
85. Matthews JM, Bhati M, Lehtomaki E, Mansfield RE, Cubeddu L, Mackay JP: It takes
two to tango: the structure and function of LIM, RING, PHD and MYND domains.
Curr Pharm Des 2009, 15(31):3681-3696.
86. Ansieau S, Leutz A: The conserved Mynd domain of BS69 binds cellular and
oncoviral proteins through a common PXLXP motif. J Biol Chem 2002, 277(7):4906-
4910.
87. Liu Y, Chen W, Gaudet J, Cheney MD, Roudaia L, Cierpicki T, Klet RC, Hartman K, Laue
TM, Speck NA et al: Structural basis for recognition of SMRT/N-CoR by the MYND
domain and its contribution to AML1/ETO′s activity. Cancer Cell 2007, 11(6):483-
497.
88. Song D, Li LS, Heaton-Johnson KJ, Arsenault PR, Master SR, Lee FS: Prolyl hydroxylase
domain protein 2 (PHD2) binds a Pro-Xaa-Leu-Glu motif, linking it to the heat shock
protein 90 pathway. J Biol Chem 2013, 288(14):9662-9674.
89. Wagner S, Behera S, De Bortoli S, Logan DC, Fuchs P, Carraretto L, Teardo E, Cendron
L, Nietzel T, Fussl M et al: The EF-Hand Ca2+ Binding Protein MICU Choreographs
Mitochondrial Ca2+ Dynamics in Arabidopsis. Plant Cell 2015, 27(11):3190-3212.
90. Bawankar P, Loh B, Wohlbold L, Schmidt S, Izaurralde E: NOT10 and C2orf29/NOT11
form a conserved module of the CCR4-NOT complex that docks onto the NOT1 Nterminal domain. RNA Biol 2013, 10(2):228-244.
91. Robin-Lespinasse Y, Sentis S, Kolytcheff C, Rostan MC, Corbo L, Le Romancer M:
hCAF1, a new regulator of PRMT1-dependent arginine methylation. J Cell Sci 2007,
120(Pt 4):638-647.
92. Souret FF, Kastenmayer JP, Green PJ: AtXRN4 degrades mRNA in Arabidopsis and its
substrates include selected miRNA targets. Mol Cell 2004, 15(2):173-183.
93. Merret R, Descombin J, Juan YT, Favory JJ, Carpentier MC, Chaparro C, Charng YY,
Deragon JM, Bousquet-Antonelli C: XRN4 and LARP1 are required for a heattriggered mRNA decay pathway involved in plant acclimation and survival during
thermal stress. Cell Rep 2013, 5(5):1279-1293.
94. Zaessinger S, Busseau I, Simonelig M: Oskar allows nanos mRNA translation in
Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development
2006, 133(22):4573-4583.
95. Chicoine J, Benoit P, Gamberi C, Paliouras M, Simonelig M, Lasko P: Bicaudal-C62
recruits CCR4-NOT deadenylase to target mRNAs and regulates oogenesis,
cytoskeletal organization, and its own expression. Dev Cell 2007, 13(5):691-704.
96. Wang D, Guo Y, Wu C, Yang G, Li Y, Zheng C: Genome-wide analysis of CCCH zinc
finger family in Arabidopsis and rice. BMC Genomics 2008, 9:44.
97. Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K,
Nakashima K, Yamaguchi-Shinozaki K: OsTZF1, a CCCH-tandem zinc finger protein,
confers delayed senescence and stress tolerance in rice by regulating stress-related
genes. Plant Physiol 2013, 161(3):1202-1216.
98. Maldonado-Bonilla LD, Eschen-Lippold L, Gago-Zachert S, Tabassum N, Bauer N,
Scheel D, Lee J: The Arabidopsis tandem zinc finger 9 protein binds RNA and
mediates pathogen-associated molecular pattern-triggered immune responses.
Plant Cell Physiol 2014, 55(2):412-425.
99. Qu J, Kang SG, Wang W, Musier-Forsyth K, Jang JC: The Arabidopsis thaliana tandem
zinc finger 1 (AtTZF1) protein in RNA binding and decay. Plant J 2014, 78(3):452-467.
100. Tam PP, Barrette-Ng IH, Simon DM, Tam MW, Ang AL, Muench DG: The Puf family of
RNA-binding proteins in plants: phylogeny, structural modeling, activity and
subcellular localization. BMC Plant Biol 2010, 10:44.
101. Francischini CW, Quaggio RB: Molecular characterization of Arabidopsis thaliana PUF
proteins--binding specificity and target candidates. FEBS J 2009, 276(19):5456-5470.
102. Mauxion F, Chen CY, Seraphin B, Shyu AB: BTG/TOB factors impact deadenylases.
Trends Biochem Sci 2009, 34(12):640-647.
103. Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W: miRNA
repression involves GW182-mediated recruitment of CCR4-NOT through conserved
W-containing motifs. Nat Struct Mol Biol 2011, 18(11):1218-1226.
104. Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A,
Dziembowski A, Nowotny M, Conti E, Filipowicz W: Structural and biochemical
insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA
repression. Mol Cell 2014, 54(5):751-765.
105. Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E: Structural basis for the
Nanos-mediated recruitment of the CCR4-NOT complex and translational
repression. Genes Dev 2014, 28(8):888-901.
106. Raisch T, Bhandari D, Sabath K, Helms S, Valkov E, Weichenrieder O, Izaurralde E:
Distinct modes of recruitment of the CCR4-NOT complex by Drosophila and
vertebrate Nanos. EMBO J 2016, 35(9):974-990.
107. Stowell JA, Webster MW, Kogel A, Wolf J, Shelley KL, Passmore LA: Reconstitution of
Targeted Deadenylation by the Ccr4-Not Complex and the YTH Domain Protein
Mmi1. Cell Rep 2016, 17(8):1978-1989.
108. Ezzeddine N, Chen CY, Shyu AB: Evidence providing new insights into TOB-promoted63
deadenylation and supporting a link between TOB′s deadenylation-enhancing and
antiproliferative activities. Mol Cell Biol 2012, 32(6):1089-1098.
109. Rouault JP, Prevot D, Berthet C, Birot AM, Billaud M, Magaud JP, Corbo L: Interaction
of BTG1 and p53-regulated BTG2 gene products with mCaf1, the murine homolog of
a component of the yeast CCR4 transcriptional regulatory complex. J Biol Chem
1998, 273(35):22563-22569.
110. Ikematsu N, Yoshida Y, Kawamura-Tsuzuku J, Ohsugi M, Onda M, Hirai M, Fujimoto J,
Yamamoto T: Tob2, a novel anti-proliferative Tob/BTG1 family member, associates
with a component of the CCR4 transcriptional regulatory complex capable of
binding cyclin-dependent kinases. Oncogene 1999, 18(52):7432-7441.
111. Yoshida Y, Hosoda E, Nakamura T, Yamamoto T: Association of ANA, a member of the
antiproliferative Tob family proteins, with a Caf1 component of the CCR4
transcriptional regulatory complex. Jpn J Cancer Res 2001, 92(6):592-596.
112. Nakamura T, Yao R, Ogawa T, Suzuki T, Ito C, Tsunekawa N, Inoue K, Ajima R, Miyasaka
T, Yoshida Y et al: Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator
of retinoid X receptor beta. Nat Genet 2004, 36(5):528-533.
113. Schwede A, Manful T, Jha BA, Helbig C, Bercovich N, Stewart M, Clayton C: The role of
deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic
Acids Res 2009, 37(16):5511-5528.
114. Temme C, Zhang L, Kremmer E, Ihling C, Chartier A, Sinz A, Simonelig M, Wahle E:
Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA
deadenylation. RNA 2010, 16(7):1356-1370.
115. Azzouz N, Panasenko OO, Colau G, Collart MA: The CCR4-NOT complex physically and
functionally interacts with TRAMP and the nuclear exosome. PLoS One 2009,
4(8):e6760.
116. LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D: RNA
degradation by the exosome is promoted by a nuclear polyadenylation complex.
Cell 2005, 121(5):713-724.
117. Houseley J, Tollervey D: The nuclear RNA surveillance machinery: the link between
ncRNAs and genome structure in budding yeast? Biochim Biophys Acta 2008,
1779(4):239-246.
118. Schneider C, Tollervey D: Threading the barrel of the RNA exosome. Trends Biochem
Sci 2013, 38(10):485-493.
119. Stalder L, Muhlemann O: Processing bodies are not required for mammalian
nonsense-mediated mRNA decay. RNA 2009, 15(7):1265-1273.
120. Motomura K, Le QT, Hamada T, Kutsuna N, Mano S, Nishimura M, Watanabe Y:
Diffuse decapping enzyme DCP2 accumulates in DCP1 foci under heat stress in
Arabidopsis thaliana. Plant Cell Physiol 2015, 56(1):107-115.64
121. Coller J, Parker R: Eukaryotic mRNA decapping. Annu Rev Biochem 2004, 73:861-890.
122. Borja MS, Piotukh K, Freund C, Gross JD: Dcp1 links coactivators of mRNA decapping
to Dcp2 by proline recognition. RNA 2011, 17(2):278-290.
123. Lopez-Rosas I, Orozco E, Marchat LA, Garcia-Rivera G, Guillen N, Weber C, CarrilloTapia E, Hernandez de la Cruz O, Perez-Plasencia C, Lopez-Camarillo C: mRNA decay
proteins are targeted to poly(A)+ RNA and dsRNA-containing cytoplasmic foci that
resemble P-bodies in Entamoeba histolytica. PLoS One 2012, 7(9):e45966.
124. Wagner E, Clement SL, Lykke-Andersen J: An unconventional human Ccr4-Caf1
deadenylase complex in nuclear cajal bodies. Mol Cell Biol 2007, 27(5):1686-1695.
125. Sweet TJ, Boyer B, Hu W, Baker KE, Coller J: Microtubule disruption stimulates Pbody formation. RNA 2007, 13(4):493-502.
126. Aizer A, Shav-Tal Y: Intracellular trafficking and dynamics of P bodies. Prion 2008,
2(4):131-134.
127. Loschi M, Leishman CC, Berardone N, Boccaccio GL: Dynein and kinesin regulate
stress-granule and P-body dynamics. J Cell Sci 2009, 122(Pt 21):3973-3982.
128. Yeh CH, Kaplinsky NJ, Hu C, Charng YY: Some like it hot, some like it warm:
phenotyping to explore thermotolerance diversity. Plant Sci 2012, 195:10-23.
129. Wu SJ, Wang LC, Yeh CH, Lu CA, Wu SJ: Isolation and characterization of the
Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear
export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. New Phytol 2010,
186(4):833-842.
指導教授 陸重安(Chung-An Lu) 審核日期 2017-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明