參考文獻 |
1. Knudson, A.G., Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences, 1971. 68(4): p. 820-823.
2. Furth, J., M.C. Kahn, and C. Breedis, The transmission of leukemia of mice with a single cell. The American Journal of Cancer, 1937. 31(2): p. 276-282.
3. Caceres-Cortes, J., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-648.
4. Tan, B.T., et al., The cancer stem cell hypothesis: a work in progress. Laboratory investigation, 2006. 86(12): p. 1203-1207.
5. Donnenberg, V.S. and A.D. Donnenberg, Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. The Journal of Clinical Pharmacology, 2005. 45(8): p. 872-877.
6. Das, S., M. Srikanth, and J.A. Kessler, Cancer stem cells and glioma. Nature clinical practice Neurology, 2008. 4(8): p. 427-435.
7. Houghton, J., et al. Stem cells and cancer. in Seminars in cancer biology. 2007. Elsevier.
8. Liang, Y., et al., Stem-like cancer cells are inducible by increasing genomic instability in cancer cells. Journal of Biological Chemistry, 2010. 285(7): p. 4931-4940.
9. Yang, G., et al., Chemotherapy not only enriches but also induces cancer stem cells. Bioscience Hypotheses, 2009. 2(6): p. 393-395.
10. Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Experimental cell research, 1961. 25(3): p. 585-621.
11. Eisenberg, D.T., An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. American Journal of Human Biology, 2011. 23(2): p. 149-167.
12. Feng, J., et al., The RNA component of human telomerase. science, 1995. 269(5228): p. 1236.
13. Keith, W.N., et al., Telomerase-directed molecular therapeutics. Expert reviews in molecular medicine, 2002. 4(10): p. 1-25.
14. Singh, A. and J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010. 29(34): p. 4741-4751.
15. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. The Journal of clinical investigation, 2010. 120(5): p. 1786.
16. Borgna, S., et al., Mesenchymal traits are selected along with stem features in breast cancer cells grown as mammospheres. Cell Cycle, 2012. 11(22): p. 4242-4251.
17. Kong, D., et al., Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PloS one, 2010. 5(8): p. e12445.
18. Bertolini, G., L. Gatti, and L. Roz, The “stem” of chemoresistance. Cell Cycle, 2010. 9(4): p. 628-629.
19. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 2003. 100(7): p. 3983-3988.
20. Li, C., et al., Identification of pancreatic cancer stem cells. Cancer research, 2007. 67(3): p. 1030-1037.
21. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. nature, 2007. 445(7123): p. 111-115.
22. Bonner, W., et al., Fluorescence activated cell sorting. Review of Scientific Instruments, 1972. 43(3): p. 404-409.
23. Ho, M.M., et al., Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer research, 2007. 67(10): p. 4827-4833.
24. Szotek, P.P., et al., Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences, 2006. 103(30): p. 11154-11159.
25. Dontu, G., et al., In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & development, 2003. 17(10): p. 1253-1270.
26. Bhat-Nakshatri, P., et al., SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24-phenotype. BMC cancer, 2010. 10(1): p. 1.
27. Battula, V.L., et al., Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. The Journal of clinical investigation, 2012. 122(6): p. 2066-2078.
28. Creighton, C.J., et al., Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of the National Academy of Sciences, 2009. 106(33): p. 13820-13825.
29. Shats, I., et al., Using a stem cell–based signature to guide therapeutic selection in cancer. Cancer research, 2011. 71(5): p. 1772-1780.
30. Gunther, H., et al., Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene, 2008. 27(20): p. 2897-2909.
31. Yu, Y.-H., et al., Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer. Scientific reports, 2012. 2: p. 584.
32. Sun, Y., et al., Role of insulin-like growth factor-1 signaling pathway in cisplatin-resistant lung cancer cells. International Journal of Radiation Oncology* Biology* Physics, 2012. 82(3): p. e563-e572.
33. Wang, L., et al., Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Molecular and cellular biochemistry, 2012. 363(1-2): p. 257-268.
34. Duhagon, M.A., et al., Genomic profiling of tumor initiating prostatospheres. BMC genomics, 2010. 11(1): p. 1.
35. Sabates-Bellver, J., et al., Transcriptome profile of human colorectal adenomas. Molecular Cancer Research, 2007. 5(12): p. 1263-1275.
36. Stelzer, Y., O. Yanuka, and N. Benvenisty, Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells. Nature structural & molecular biology, 2011. 18(6): p. 735-741.
37. Sartor, M.A., et al., ConceptGen: a gene set enrichment and gene set relation mapping tool. Bioinformatics, 2010. 26(4): p. 456-463.
38. Hsu, C.-L., et al., Genotypes of cancer stem cells characterized by epithelial-to-mesenchymal transition and proliferation related functions. Scientific reports, 2016. 6.
39. Gibson, G., Microarray analysis. PLoS Biol, 2003. 1(1): p. e15.
40. Heller, M.J., DNA microarray technology: devices, systems, and applications. Annual review of biomedical engineering, 2002. 4(1): p. 129-153.
41. Crowson, A.N., The future of dermatopathology. Modern pathology, 2006. 19: p. S155-S163.
42. Ashburner, M., et al., Gene Ontology: tool for the unification of biology. Nature genetics, 2000. 25(1): p. 25-29.
43. Liberzon, A., et al., Molecular signatures database (MSigDB) 3.0. Bioinformatics, 2011. 27(12): p. 1739-1740.
44. Edgar, R., M. Domrachev, and A.E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic acids research, 2002. 30(1): p. 207-210.
45. Jolliffe, I., Principal component analysis2002: Wiley Online Library.
46. Ma, X.-J., et al., Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Research, 2009. 11(1): p. 1.
47. Bolstad, B., et al., Bioinformatics and computational biology solutions using R and Bioconductor. Springer, 2005: p. 33-48.
48. Nam, D. and S.-Y. Kim, Gene-set approach for expression pattern analysis. Briefings in bioinformatics, 2008. 9(3): p. 189-197.
49. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 2005. 102(43): p. 15545-15550.
50. Kim, S.-Y. and D.J. Volsky, PAGE: parametric analysis of gene set enrichment. BMC bioinformatics, 2005. 6(1): p. 1.
51. Luo, W., et al., GAGE: generally applicable gene set enrichment for pathway analysis. BMC bioinformatics, 2009. 10(1): p. 1.
52. Subramanian, A., et al., GSA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics, 2007. 23(23): p. 3251-3253.
53. Gentleman, R.C., et al., Bioconductor: open software development for computational biology and bioinformatics. Genome biology, 2004. 5(10): p. 1.
54. Team, R.C., R language definition. Vienna, Austria: R Foundation for Statistical Computing, 2000.
55. Kim, H.K., et al., A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PloS one, 2011. 6(2): p. e16694.
56. Assou, S., et al., A meta?analysis of human embryonic stem cells transcriptome integrated into a web?based expression atlas. Stem Cells, 2007. 25(4): p. 961-973.
57. Hu, Z., et al., The molecular portraits of breast tumors are conserved across microarray platforms. BMC genomics, 2006. 7(1): p. 96.
58. Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. cell, 2005. 122(6): p. 947-956.
59. Cheng, W.-Y., et al., A multi-cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma. PloS one, 2012. 7(4): p. e34705.
60. Liu, R., et al., The prognostic role of a gene signature from tumorigenic breast-cancer cells. New England Journal of Medicine, 2007. 356(3): p. 217-226.
61. Chen, C.-H., et al., Method Designed to Respect Molecular Heterogeneity Can Profoundly Correct Present Data Interpretations for Genome-Wide Expression Analysis. PLoS One, 2015. 10(3): p. e0121154.
62. Upton, G.J., Fisher′s exact test. Journal of the Royal Statistical Society. Series A (Statistics in Society), 1992: p. 395-402.
63. Kanehisa, M., et al., Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic acids research, 2014. 42(D1): p. D199-D205.
64. Wang, J., et al., WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic acids research, 2013. 41(W1): p. W77-W83.
65. Groger, C.J., et al., Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression. PloS one, 2012. 7(12): p. e51136.
66. Whitfield, M.L., et al., Common markers of proliferation. Nature Reviews Cancer, 2006. 6(2): p. 99-106.
67. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer, 2009. 9(3): p. 153-166.
68. Malumbres, M., et al., CDK inhibitors in cancer therapy: what is next? Trends in pharmacological sciences, 2008. 29(1): p. 16-21.
69. Blow, J.J. and B. Hodgson, Replication licensing—Origin licensing: defining the proliferative state? Trends in cell biology, 2002. 12(2): p. 72-78.
70. Fujii, H., et al., Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. International journal of oncology, 2009. 34(5): p. 1381.
71. Sheridan, C., et al., CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Research, 2006. 8(5): p. 1.
72. Ma, C., et al., Extracellular matrix protein βig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes & development, 2008. 22(3): p. 308-321.
73. Sakashita, K., et al., Clinical significance of ApoE expression in human gastric cancer. Oncology reports, 2008. 20(6): p. 1313-1319.
74. Soikkeli, J., et al., Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. The American journal of pathology, 2010. 177(1): p. 387-403.
75. Liu, C.-H. and S.-M. Hwang, Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine, 2005. 32(6): p. 270-279.
76. Lehmann, B.D., et al., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of clinical investigation, 2011. 121(7): p. 2750.
77. Mendez, M.G., S.-I. Kojima, and R.D. Goldman, Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. The FASEB Journal, 2010. 24(6): p. 1838-1851.
78. Martin, P., et al., Prostate epithelial Pten/TP53 loss leads to transformation of multipotential progenitors and epithelial to mesenchymal transition. The American journal of pathology, 2011. 179(1): p. 422-435.
79. Fuchs, B.C., et al., Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer research, 2008. 68(7): p. 2391-2399.
80. Guaita, S., et al., Snail Induction of Epithelial to Mesenchymal Transition in Tumor Cells Is Accompanied by MUC1 Repression andZEB1 Expression. Journal of Biological Chemistry, 2002. 277(42): p. 39209-39216.
81. Samavarchi-Tehrani, P., et al., Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell stem cell, 2010. 7(1): p. 64-77.
82. Gillet, J.-P., T. Efferth, and J. Remacle, Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2007. 1775(2): p. 237-262.
83. Zuo, W. and Y.-G. Chen, Specific activation of mitogen-activated protein kinase by transforming growth factor-β receptors in lipid rafts is required for epithelial cell plasticity. Molecular biology of the cell, 2009. 20(3): p. 1020-1029.
84. Legry, V., et al., Associations between common genetic polymorphisms in the liver X receptor alpha and its target genes with the serum HDL-cholesterol concentration in adolescents of the HELENA Study. Atherosclerosis, 2011. 216(1): p. 166-169.
85. Liu, D., et al., Human homologue of cement gland protein, a novel metastasis inducer associated with breast carcinomas. Cancer research, 2005. 65(9): p. 3796-3805.
86. De Roock, W., et al., KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. The lancet oncology, 2011. 12(6): p. 594-603.
87. Berg, M. and K. Soreide, EGFR and downstream genetic alterations in KRAS/BRAF and PI3K/AKT pathways in colorectal cancer—implications for targeted therapy. Discovery medicine, 2012. 14(76): p. 207-214.
88. Irahara, N., et al., NRAS mutations are rare in colorectal cancer. Diagnostic molecular pathology: the American journal of surgical pathology, part B, 2010. 19(3): p. 157.
89. Glading, A., et al., PEA-15 inhibits tumor cell invasion by binding to extracellular signal-regulated kinase 1/2. Cancer research, 2007. 67(4): p. 1536-1544.
90. Kumar, S., A. Das, and S. Sen, Extracellular matrix density promotes EMT by weakening cell–cell adhesions. Molecular BioSystems, 2014. 10(4): p. 838-850.
91. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression. The Journal of cell biology, 2012. 196(4): p. 395-406.
92. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. cell, 2009. 139(5): p. 871-890.
93. Evdokimova, V., et al., Reduced proliferation and enhanced migration: two sides of the same coin? Molecular mechanisms of metastatic progression by YB-1. Cell Cycle, 2009. 8(18): p. 2901-2906.
94. Liu, J., et al., Slug inhibits proliferation of human prostate cancer cells via downregulation of cyclin D1 expression. The Prostate, 2010. 70(16): p. 1768-1777.
95. Chanrion, M., et al., Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. Nature communications, 2014. 5.
96. Fischer, K.R., et al., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015. 527(7579): p. 472-476.
97. Zheng, X., et al., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 2015.
|