博碩士論文 982413002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:98.84.18.52
姓名 許爵麟(Chueh-Lin Hsu)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 以上皮細胞間質化與增生相關功能來描述癌症幹細胞之基因型
(Genotypes of cancer stem cells characterized by epithelial-to-mesenchymal transition and proliferation related functions)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型
★ 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法
★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法★ 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台
★ Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究
★ 基因體功能統合分析在阿茲海默症和大腦老化-近年阿茲海默症研發藥物失敗的理論問題探討★ 運用時間序列微陣列資料來預測調控基因
★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型★ 一種找尋再利用藥物複合物來系統性治療複雜疾病的架構:大腸直腸腺瘤的應用
★ 從共表達差異基因對導出正常腦老化及因阿茲海默症特定腦區導致在功能性基因途徑與樞紐基因子網絡之變化★ 以疾病進展趨勢挑選基因法識別正常腦老化與阿爾茨海默氏症在特定腦區引發的關鍵功能路徑與調節路徑之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 癌幹細胞或稱為具有幹細胞特性的癌細胞,通常表現耐藥性,以及高效率誘導癌症的能力。在過去幾年,公共資料庫收集的全基因組表現量數據,已有癌幹細胞分子與功能特徵的相關研究,這些材料足夠提供進一步的分析。在這裡,本研究使用公開的癌幹細胞全基因組基因表現量數據集,利用主成分分析篩選出十四組癌幹細胞組和四組控制組的高品質數據集。使用來自分子簽名資料庫的6,002個基因分子簽名,分析這十八組數據集。癌幹細胞數據集在本研究被區分為三種基因型。第一型由神經膠質瘤癌幹細胞主導,明顯強化增生相關功能,同時抑制上皮細胞間質化相關功能。第二型皆為乳癌幹細胞組成,顯著增強上皮細胞間質化相關功能,但無增生相關功能的反應。第三型由卵巢癌、前列腺癌、大腸癌的癌幹細胞所組成,有同時顯著抑制增生與上皮細胞間質化相關功能的錯雜現象。
摘要(英) Cancer stem cells (CSCs), or cancer cells with stem cell-like properties, generally exhibit drug resistance and have highly potent cancer inducing capabilities. Genome-wide expression data collected at public repositories over the last few years provide excellent material for studies that can lead to insights concerning the molecular and functional characteristics of CSCs. Here, we conducted functional genomic studies of CSC based on fourteen PCA-screened high quality public CSC whole genome gene expression datasets and, as control, four high quality non-stem-like cancer cell and non-cancerous stem cell datasets from the Gene Expression Omnibus database. A total of 6,002 molecular signatures were taken from the Molecular Signatures Database and used to characterize the datasets, which, under two-way hierarchical clustering, formed three genotypes. Type 1, consisting of mainly glia CSCs, had significantly enhanced proliferation, and significantly suppressed epithelial-mesenchymal transition (EMT), related functions. Type 2, mainly breast CSCs, had significantly enhanced EMT, but not proliferation, related functions. Type 3, composed of ovarian, prostate, and colon CSCs, had significantly suppressed proliferation related functions and mixed expressions on EMT related functions.
關鍵字(中) ★ 癌症幹細胞
★ 上皮細胞間質化
★ 增生
關鍵字(英) ★ cancer stem cell
★ epithelial-mesenchymal transition
★ EMT
★ proliferation
★ GSEA
論文目次 圖目錄 iv
表目錄 vi
一、 介紹 1
1.1 癌幹細胞(cancer stem cells) 1
1.2 增生(proliferation) 2
1.3 上皮細胞間質化(epithelial to mesenchymal transitions) 4
1.4 辨識癌幹細胞 6
1.5 微陣列(microarray) 8
1.6 基因本體論(gene ontology) 9
1.7 研究問題 10
二、 材料與方法 11
2.1 癌幹細胞數據集的收集 11
2.2 分子簽名資料庫(MSigDB) 12
2.3 主成分分析(PCA)的質量控制 12
2.4 基於個別基因的分析(individual gene-based analysis) 13
2.5 基於基因集的分析(gene set-based analysis) 14
2.6 基因與簽名的挑選 15
2.7 單向和雙向的集群分析 16
2.8 集群基因集(cluster gene set)的建立 16
2.9 數據集分類的驗證 16
2.10 特定基因型的CSCs差異基因挑選 17
2.11 基因本體論(gene ontology)和京都基因與基因組百科全書(kyoto encyclopedia of genes and genomes)的富集分析 18
三、 結果 19
3.1 挑選具有高PCA分數的數據集與差異表現量基因 19
3.2 數據組在IGA的DEGs交集 21
3.3 優於IGA的GSA單向集群分類 22
3.4 GSA產生三種簽名集群和三種基因型 24
3.5 使用CGSs構建集群熱圖 26
3.6 六個已知癌症和幹細胞相關簽名集群與152個簽名集群的結果類似 28
3.7 三個CGSs在GO術語中的富集強度 29
3.8 具有增生與EMT相關功能特徵的基因型群組 31
四、 討論 37
五、 總結 42
參考文獻 43
附表一、專有名詞縮寫對照表 48

參考文獻 1. Knudson, A.G., Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences, 1971. 68(4): p. 820-823.
2. Furth, J., M.C. Kahn, and C. Breedis, The transmission of leukemia of mice with a single cell. The American Journal of Cancer, 1937. 31(2): p. 276-282.
3. Caceres-Cortes, J., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-648.
4. Tan, B.T., et al., The cancer stem cell hypothesis: a work in progress. Laboratory investigation, 2006. 86(12): p. 1203-1207.
5. Donnenberg, V.S. and A.D. Donnenberg, Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. The Journal of Clinical Pharmacology, 2005. 45(8): p. 872-877.
6. Das, S., M. Srikanth, and J.A. Kessler, Cancer stem cells and glioma. Nature clinical practice Neurology, 2008. 4(8): p. 427-435.
7. Houghton, J., et al. Stem cells and cancer. in Seminars in cancer biology. 2007. Elsevier.
8. Liang, Y., et al., Stem-like cancer cells are inducible by increasing genomic instability in cancer cells. Journal of Biological Chemistry, 2010. 285(7): p. 4931-4940.
9. Yang, G., et al., Chemotherapy not only enriches but also induces cancer stem cells. Bioscience Hypotheses, 2009. 2(6): p. 393-395.
10. Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Experimental cell research, 1961. 25(3): p. 585-621.
11. Eisenberg, D.T., An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. American Journal of Human Biology, 2011. 23(2): p. 149-167.
12. Feng, J., et al., The RNA component of human telomerase. science, 1995. 269(5228): p. 1236.
13. Keith, W.N., et al., Telomerase-directed molecular therapeutics. Expert reviews in molecular medicine, 2002. 4(10): p. 1-25.
14. Singh, A. and J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010. 29(34): p. 4741-4751.
15. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. The Journal of clinical investigation, 2010. 120(5): p. 1786.
16. Borgna, S., et al., Mesenchymal traits are selected along with stem features in breast cancer cells grown as mammospheres. Cell Cycle, 2012. 11(22): p. 4242-4251.
17. Kong, D., et al., Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PloS one, 2010. 5(8): p. e12445.
18. Bertolini, G., L. Gatti, and L. Roz, The “stem” of chemoresistance. Cell Cycle, 2010. 9(4): p. 628-629.
19. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 2003. 100(7): p. 3983-3988.
20. Li, C., et al., Identification of pancreatic cancer stem cells. Cancer research, 2007. 67(3): p. 1030-1037.
21. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. nature, 2007. 445(7123): p. 111-115.
22. Bonner, W., et al., Fluorescence activated cell sorting. Review of Scientific Instruments, 1972. 43(3): p. 404-409.
23. Ho, M.M., et al., Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer research, 2007. 67(10): p. 4827-4833.
24. Szotek, P.P., et al., Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences, 2006. 103(30): p. 11154-11159.
25. Dontu, G., et al., In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & development, 2003. 17(10): p. 1253-1270.
26. Bhat-Nakshatri, P., et al., SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24-phenotype. BMC cancer, 2010. 10(1): p. 1.
27. Battula, V.L., et al., Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. The Journal of clinical investigation, 2012. 122(6): p. 2066-2078.
28. Creighton, C.J., et al., Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of the National Academy of Sciences, 2009. 106(33): p. 13820-13825.
29. Shats, I., et al., Using a stem cell–based signature to guide therapeutic selection in cancer. Cancer research, 2011. 71(5): p. 1772-1780.
30. Gunther, H., et al., Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene, 2008. 27(20): p. 2897-2909.
31. Yu, Y.-H., et al., Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer. Scientific reports, 2012. 2: p. 584.
32. Sun, Y., et al., Role of insulin-like growth factor-1 signaling pathway in cisplatin-resistant lung cancer cells. International Journal of Radiation Oncology* Biology* Physics, 2012. 82(3): p. e563-e572.
33. Wang, L., et al., Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Molecular and cellular biochemistry, 2012. 363(1-2): p. 257-268.
34. Duhagon, M.A., et al., Genomic profiling of tumor initiating prostatospheres. BMC genomics, 2010. 11(1): p. 1.
35. Sabates-Bellver, J., et al., Transcriptome profile of human colorectal adenomas. Molecular Cancer Research, 2007. 5(12): p. 1263-1275.
36. Stelzer, Y., O. Yanuka, and N. Benvenisty, Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells. Nature structural & molecular biology, 2011. 18(6): p. 735-741.
37. Sartor, M.A., et al., ConceptGen: a gene set enrichment and gene set relation mapping tool. Bioinformatics, 2010. 26(4): p. 456-463.
38. Hsu, C.-L., et al., Genotypes of cancer stem cells characterized by epithelial-to-mesenchymal transition and proliferation related functions. Scientific reports, 2016. 6.
39. Gibson, G., Microarray analysis. PLoS Biol, 2003. 1(1): p. e15.
40. Heller, M.J., DNA microarray technology: devices, systems, and applications. Annual review of biomedical engineering, 2002. 4(1): p. 129-153.
41. Crowson, A.N., The future of dermatopathology. Modern pathology, 2006. 19: p. S155-S163.
42. Ashburner, M., et al., Gene Ontology: tool for the unification of biology. Nature genetics, 2000. 25(1): p. 25-29.
43. Liberzon, A., et al., Molecular signatures database (MSigDB) 3.0. Bioinformatics, 2011. 27(12): p. 1739-1740.
44. Edgar, R., M. Domrachev, and A.E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic acids research, 2002. 30(1): p. 207-210.
45. Jolliffe, I., Principal component analysis2002: Wiley Online Library.
46. Ma, X.-J., et al., Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Research, 2009. 11(1): p. 1.
47. Bolstad, B., et al., Bioinformatics and computational biology solutions using R and Bioconductor. Springer, 2005: p. 33-48.
48. Nam, D. and S.-Y. Kim, Gene-set approach for expression pattern analysis. Briefings in bioinformatics, 2008. 9(3): p. 189-197.
49. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 2005. 102(43): p. 15545-15550.
50. Kim, S.-Y. and D.J. Volsky, PAGE: parametric analysis of gene set enrichment. BMC bioinformatics, 2005. 6(1): p. 1.
51. Luo, W., et al., GAGE: generally applicable gene set enrichment for pathway analysis. BMC bioinformatics, 2009. 10(1): p. 1.
52. Subramanian, A., et al., GSA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics, 2007. 23(23): p. 3251-3253.
53. Gentleman, R.C., et al., Bioconductor: open software development for computational biology and bioinformatics. Genome biology, 2004. 5(10): p. 1.
54. Team, R.C., R language definition. Vienna, Austria: R Foundation for Statistical Computing, 2000.
55. Kim, H.K., et al., A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PloS one, 2011. 6(2): p. e16694.
56. Assou, S., et al., A meta?analysis of human embryonic stem cells transcriptome integrated into a web?based expression atlas. Stem Cells, 2007. 25(4): p. 961-973.
57. Hu, Z., et al., The molecular portraits of breast tumors are conserved across microarray platforms. BMC genomics, 2006. 7(1): p. 96.
58. Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. cell, 2005. 122(6): p. 947-956.
59. Cheng, W.-Y., et al., A multi-cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma. PloS one, 2012. 7(4): p. e34705.
60. Liu, R., et al., The prognostic role of a gene signature from tumorigenic breast-cancer cells. New England Journal of Medicine, 2007. 356(3): p. 217-226.
61. Chen, C.-H., et al., Method Designed to Respect Molecular Heterogeneity Can Profoundly Correct Present Data Interpretations for Genome-Wide Expression Analysis. PLoS One, 2015. 10(3): p. e0121154.
62. Upton, G.J., Fisher′s exact test. Journal of the Royal Statistical Society. Series A (Statistics in Society), 1992: p. 395-402.
63. Kanehisa, M., et al., Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic acids research, 2014. 42(D1): p. D199-D205.
64. Wang, J., et al., WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic acids research, 2013. 41(W1): p. W77-W83.
65. Groger, C.J., et al., Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression. PloS one, 2012. 7(12): p. e51136.
66. Whitfield, M.L., et al., Common markers of proliferation. Nature Reviews Cancer, 2006. 6(2): p. 99-106.
67. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nature Reviews Cancer, 2009. 9(3): p. 153-166.
68. Malumbres, M., et al., CDK inhibitors in cancer therapy: what is next? Trends in pharmacological sciences, 2008. 29(1): p. 16-21.
69. Blow, J.J. and B. Hodgson, Replication licensing—Origin licensing: defining the proliferative state? Trends in cell biology, 2002. 12(2): p. 72-78.
70. Fujii, H., et al., Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. International journal of oncology, 2009. 34(5): p. 1381.
71. Sheridan, C., et al., CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Research, 2006. 8(5): p. 1.
72. Ma, C., et al., Extracellular matrix protein βig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes & development, 2008. 22(3): p. 308-321.
73. Sakashita, K., et al., Clinical significance of ApoE expression in human gastric cancer. Oncology reports, 2008. 20(6): p. 1313-1319.
74. Soikkeli, J., et al., Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. The American journal of pathology, 2010. 177(1): p. 387-403.
75. Liu, C.-H. and S.-M. Hwang, Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine, 2005. 32(6): p. 270-279.
76. Lehmann, B.D., et al., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of clinical investigation, 2011. 121(7): p. 2750.
77. Mendez, M.G., S.-I. Kojima, and R.D. Goldman, Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. The FASEB Journal, 2010. 24(6): p. 1838-1851.
78. Martin, P., et al., Prostate epithelial Pten/TP53 loss leads to transformation of multipotential progenitors and epithelial to mesenchymal transition. The American journal of pathology, 2011. 179(1): p. 422-435.
79. Fuchs, B.C., et al., Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer research, 2008. 68(7): p. 2391-2399.
80. Guaita, S., et al., Snail Induction of Epithelial to Mesenchymal Transition in Tumor Cells Is Accompanied by MUC1 Repression andZEB1 Expression. Journal of Biological Chemistry, 2002. 277(42): p. 39209-39216.
81. Samavarchi-Tehrani, P., et al., Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell stem cell, 2010. 7(1): p. 64-77.
82. Gillet, J.-P., T. Efferth, and J. Remacle, Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2007. 1775(2): p. 237-262.
83. Zuo, W. and Y.-G. Chen, Specific activation of mitogen-activated protein kinase by transforming growth factor-β receptors in lipid rafts is required for epithelial cell plasticity. Molecular biology of the cell, 2009. 20(3): p. 1020-1029.
84. Legry, V., et al., Associations between common genetic polymorphisms in the liver X receptor alpha and its target genes with the serum HDL-cholesterol concentration in adolescents of the HELENA Study. Atherosclerosis, 2011. 216(1): p. 166-169.
85. Liu, D., et al., Human homologue of cement gland protein, a novel metastasis inducer associated with breast carcinomas. Cancer research, 2005. 65(9): p. 3796-3805.
86. De Roock, W., et al., KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. The lancet oncology, 2011. 12(6): p. 594-603.
87. Berg, M. and K. Soreide, EGFR and downstream genetic alterations in KRAS/BRAF and PI3K/AKT pathways in colorectal cancer—implications for targeted therapy. Discovery medicine, 2012. 14(76): p. 207-214.
88. Irahara, N., et al., NRAS mutations are rare in colorectal cancer. Diagnostic molecular pathology: the American journal of surgical pathology, part B, 2010. 19(3): p. 157.
89. Glading, A., et al., PEA-15 inhibits tumor cell invasion by binding to extracellular signal-regulated kinase 1/2. Cancer research, 2007. 67(4): p. 1536-1544.
90. Kumar, S., A. Das, and S. Sen, Extracellular matrix density promotes EMT by weakening cell–cell adhesions. Molecular BioSystems, 2014. 10(4): p. 838-850.
91. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression. The Journal of cell biology, 2012. 196(4): p. 395-406.
92. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. cell, 2009. 139(5): p. 871-890.
93. Evdokimova, V., et al., Reduced proliferation and enhanced migration: two sides of the same coin? Molecular mechanisms of metastatic progression by YB-1. Cell Cycle, 2009. 8(18): p. 2901-2906.
94. Liu, J., et al., Slug inhibits proliferation of human prostate cancer cells via downregulation of cyclin D1 expression. The Prostate, 2010. 70(16): p. 1768-1777.
95. Chanrion, M., et al., Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. Nature communications, 2014. 5.
96. Fischer, K.R., et al., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 2015. 527(7579): p. 472-476.
97. Zheng, X., et al., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 2015.


指導教授 李弘謙(Hoong-Chien Lee) 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明