博碩士論文 983202025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.136.17.147
姓名 朱雅雯(Ya-wen Chu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 跨越斷層橋梁之極限動力分析
(Ultimate Dynamic Analysis of Bridges Crossing a Fault)
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 塑鉸極限破壞數值模型開發
★ 橋梁直接基礎搖擺之極限分析★ 考量斷層錯動與塑鉸破壞之橋梁極限分析
★ Impact response and shear fragmentation of RC buildings during progressive collapse★ 應用多項式滾動支承之隔震橋梁研究
★ Numerical Simulation of Bridges with Inclined★ 橋梁三維極限破壞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近二十餘年世界所發生災害性地震中,已獲得相當多近斷層強地動紀錄,近斷層地表運動相較於遠域地表運動,其特色在於震波中含有長週期速度脈衝。1999年台灣921大地震中引發地震之車籠埔斷層沿線,十餘座橋梁發生嚴重損壞,除強烈地表運動外,斷層沿線最大達8公尺之錯動位移乃橋梁損壞甚至崩塌之主要原因。長久以來,跨越斷層橋梁應採何種橋型一直為橋梁工程師難解的課題,究其原因乃缺乏適當分析技術,驗證橋梁一旦遭受地表錯動位移時之動力行為,因此無從判斷各種橋型之優缺點。
本研究採用新近發展適用於處理大變形、大變位、材料非線性與剛體運動等問題之向量式有限元素法為結構動力分析方法,以六跨簡支梁橋、兩座三跨連續梁橋、兩座三跨剛接橋與六跨連續剛接橋為目標橋梁,輸入含地表錯動位移之近斷層地震波,預測橋梁極限破壞狀態。經由參數分析結果,比較各橋型之橋面板落橋、橋墩柱底塑鉸破壞與橋墩剪力破壞數目,瞭解各橋型於斷層錯動時之破壞坍塌情況,更重要為闡明各橋型之破壞機制,並比較其優缺點,本研究成果可提供橋梁實務規劃設計之參考。
摘要(英) In the past two decades, a number of near-fault ground motions have been recorded in major earthquakes, such as the 1995 Japan Kobe earthquake and the 1999 Chi-Chi earthquake. Near-fault ground motions comprise long-period pulses, which is unique as compared to far-fault ground motions. Numbers of bridges along the Chelungpu fault suffered damage, even collapsed, during the Chi-Chi earthquake. Those can be attributed to not only the strong ground motions but also ground dislocation. How to design a bridge crossing a fault is still an open issue nowadays because there is no a feasible computation technology. Therefore, it is impossible to determine the type of bridges when they span an active fault.
The Vector Form Intrinsic Finite Element (VFIFE) is superior in managing the engineering problems with material nonlinearity, discontinuity, large deformation, large displacement and arbitrary rigid body motions of deformable bodies. The VFIFE is thus selected to be the analysis method in this study. Four types of bridges, including a six-span simply-supported bridge, a three-span-continuous bridge, a three-span-rigid bridge and a six-span-rigid bridge, are analyzed to predict the failure situation under near-fault ground motions with dislocation. Through a serious of parametric studies, the failure modes are demonstrated for the four types of bridges. Importantly, the failure mechanism of all the bridges is clarified so as to compare the feasibility of four types of bridges when designing bridges crossing a fault. The simulation results should be applied to practical implementation.
關鍵字(中) ★ 極限破壞
★ 近斷層地震
★ 橋梁
★ 向量式有限元素法
★ 非線性動力分析
關鍵字(英) ★ ultimate state
★ nonlinear dynamic analysis
★ bridge
★ VFIFE
★ near-fault ground motion
論文目次 摘 要Ⅰ
AbstractⅡ
誌 謝Ⅲ
目 錄Ⅳ
表 目 錄Ⅵ
圖 目 錄Ⅷ
第一章 緒論1
1.1研究背景與動機1
1.2文獻回顧2
1.2.1向量式有限元素法2
1.2.2含地表錯動位移歷時4
1.3論文架構6
第二章 向量式有限元素法7
2.1結構離散模式7
2.2質點運動方程式8
2.3運動軌跡離散化9
2.4變形與內力計算10
2.5 Newmark-β直接積分計算程序19
第三章 含地表錯動之地表位移歷時之建立33
3.1近斷層地震波特性33
3.2建立近斷層地表運動脈衝之簡易模型35
3.3近斷層地表運動之參數分析37
3.4特殊元素38
第四章 跨越斷層橋梁之目標橋梁模型53
4.1目標橋梁型式53
4.2上部結構模擬53
4.3下部結構模擬55
4.4支承系統模擬57
4.5防止落橋裝置模擬57
4.6數值分析模型59
第五章 橋梁實例分析與探討67
5.1跨越斷層橋梁之分析與討論67
5.1.1六座單跨簡支梁橋67
5.1.2兩座三跨連續梁橋69
5.1.3兩座三跨剛接橋梁71
5.1.4六跨連續剛接橋梁73
5.2跨越斷層橋梁之最佳橋梁結構探討75
5.3特殊案例之分析與討論76
5.3.1六跨單座簡支梁橋76
5.3.2兩座三跨連續梁橋81
5.3.3簡支梁橋與連續梁橋之分析結果比較85
5.3.4兩座三跨剛接橋梁88
5.3.5六跨連續剛接橋梁93
5.3.6兩座三跨與六跨連續剛接橋之分析結果比較97
第六章 結論與未來展望206
參考文獻211
參考文獻 [1]Ting, E. C., Shih, C. and Wang, Y. K. (2004), “Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element.” Journal of Mechanics, Vol. 20, No. 2, pp. 113-122.
[2]Ting, E. C., Shih, C. and Wang, Y. K. (2004), “Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements.” Journal of Mechanics, Vol. 20, No. 2, pp. 123-132.
[3]Shih, C., Wang, Y. K. and Ting, E. C. (2004), “Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples.” Journal of Mechanics, Vol. 20, No. 2, pp. 133-143.
[4]Wang, C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C. (2004), “Elastic-Plastic Large Deformation Analysis of 2D Frame Structure.” Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21.
[5]Wu, T. Y., Wang, R. Z. and Wang, C. Y. (2006), “Large Deflection Analysis of Flexible Planar Frames.” Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 593-606.
[6]王仁佐 (2005),「向量式結構運動分析」,國立中央大學土木工程學研究所博士論文,指導教授:王仲宇、盛若磐。
[7]莊清鏘、陳詩宏、王仲宇 (2006),「向量式有限元於結構被動控制之應用」,固體與結構之工程計算-2006近代工程計算論壇,第O1-O25頁。
[8]陳柏宏 (2008),「運用向量式有限元素法於隔震橋梁之非線性動力分析」,國立中央大學土木工程學研究所碩士論文,指導教授:李姿瑩。
[9]陳開天 (2010),「橋梁碰撞效應研究」,國立中央大學土木工程學研究所碩士論文,指導教授:李姿瑩。
[10]汪栢靈 (2010),「橋梁極限破壞分析與耐震性能研究」,國立中央大學土木工程學研究所碩士論文,指導教授:李姿瑩。
[11]蘇俊全 (2011),「強震中橋梁極限破壞三維分析」,國立中央大學土木工程學研究所碩士論文,指導教授:李姿瑩。
[12]Japan Road Association, (2002), Design Specification of Highway Bridges, Part V Seismic Design, Maruze, Tokyo, Japan.
[13]Somerville, P. (1997), “Engineering Characteristics of Near Fault Ground Motion.” Proceeding of SMIP97 Seminar on Utilization of Strong-Motion Data, Los Angeles, California, May.
[14]Somerville, P. (1998), “Development of an improved ground motion representation for near fault ground motions.” Proceedings of SMIP98 Seminar on Utilization of Strong-Motion Data, Oakland, CA, September.
[15]Mavroeidis, G. P. and Papageorgiou, A. S. (2003), “A mathematical expression of near-fault ground motions.” Bulletin of the Seismological Society of America, Vol. 93, No. 3, pp. 1099-1131.
[16]Boore, D. (2001), “Effect of baseline correction on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake.” Bulletin of the Seismological Society of America, Vol. 91, No. 5, pp. 1199-1211.
[17]Alavi, B. and Krawinkler, H. (2004), “Behaviour of moment resisting frame structures subjected to near-fault ground motions.” Earthquake Engineering and Structure Dynamic, Vol. 33, pp. 687-706.
[18]Kalkan, E. and S Kunnath, S. K. (2006), “Effects of Fling Step and Forward Directivity on Seismic Response of Buildings.” Earthquake Spectra, Vol. 22, No. 2, pp. 367-390, May.
[19]Watanabe, G. and Kawashima, K. (2004), “Numerical Simulation of Pounding of Bridge Decks.” 13th World Conference on Earthquake Engineering, Paper No. 884 (CD-ROM), Vancouver, B.C., Canada.
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明