博碩士論文 983202055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.138.123.16
姓名 張皓鈞(Hao-Chun Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 放射性廢棄物最終處置場緩衝材料與混凝土障壁的交互作用
(The interactions between the buffer material and concrete barrier of radioactive wastes in a repository)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以台東樟原村日興土與美國懷俄明州BH膨潤土,運用壓製方式製作膨潤土緩衝材料,並且與符合ACI 349核能安全相關用途混凝土規範的ACI混凝土,以及添加鋼纖維的RPC活性粉混凝土進行電滲加速試驗,以模擬處置場近場環境混凝土與緩衝材料之間長期的交互作用,從中了解混凝土溶出失鈣效應對緩衝材料性質的影響,以評估適合放射性廢棄物處置場之緩衝材料。
試驗結果顯示,經過電滲加速試驗後的二種膨潤土緩衝材料,隨電滲時間越長,回脹量、pH值越低,且越靠近混凝土接觸面之緩衝材料,其鈣/鈉離子比值差距越大,回脹量和pH值也越低。後續的微觀分析結果顯示,二種膨潤土緩衝材料在接近混凝土接觸面的部分有受到鈣離子入侵影響的情形,並隨著電滲時間越長,影響越為顯著,其中BH膨潤土因接觸而產生的變化較明顯;二種混凝土隨電滲時間越長,氫氧化鈣、C-S-H膠體的含量越低,溶出失鈣的現象越顯著,並且在混凝土表面產生許多孔隙,其中以ACI混凝土的變化較為明顯。
摘要(英) Both concrete and clay-based materials serve as engineered barriers for isolation of high-level radioactive wastes in a repository. Being the major components in the barrier system, concrete and buffer material are expected to create an impermeable zone around the high level waste canisters, and the interactions between the two barriers need to be evaluated to insure disposal safety.
In this research, a migration technique was applied to accelerate the migration of calcium ions from the pore solution of concrete so as to investigate the alteration of compacted bentonite in contact with the concrete. The buffer material used is compacted bentonite, made using locally available Zhisin clay and Black Hills bentonite from Wyoming. And the barrier concrete mixes were proportioned according to traditional American Concrete Institute (ACI) mix design method and Reactive Powder Concrete (RPC) with steel fiber. After a target cumulative electric charge, the specimen are be removed for analysis. The physical characteristics of both bentonite buffer and concrete barrier are examined to assure that the long-term contact of these 2 barriers does not cause severe degradation.
The results show some decrease in swelling potential and the pH of the buffer material near the interface. Also, buffer material close to the contact of the concrete exhibits larger change in the ratio of calcium/sodium concentration, due to the release of calcium ions from the concrete barrier. The observed changes in BHbentonite are found to be more obvious than that in ZH bentonite.
The content of calcium hydroxide and C-S-H colloid are found to have reduced both in ACI and RPC concrete mixes after the migration test. The leaching of calcium from concrete becomes more prominent with the increase in accelerated electro-osmosis test period. Many pores are found on concrete surface. The effect of the buffer/concrete interactions on ACI concrete is more obvious than that on RPC concrete.
關鍵字(中) ★ 緩衝材料
★ 溶出失鈣
★ 電滲加速試驗
關鍵字(英) ★ leaching
★ accelerated electro-osmosis test
★ buffer material
論文目次 摘要......................................................I
Abstract.................................................II
致謝....................................................III
目錄.....................................................IV
圖目錄.................................................VIII
表目錄..................................................XII
第一章 緒論..............................................1
1.1 研究動機.............................................1
1.2 研究目的.............................................2
1.3 研究方法與範圍.........................................3
第二章 文獻回顧..........................................6
2.1 放射性廢棄物處置現況................................6
2.2 緩衝材料所需具備功能................................8
2.3 膨潤土礦物基本特性.................................11
2.3.1 膨潤土礦物的結晶構造...........................11
2.3.2 膨潤土與水的作用...............................12
2.3.3 分散與絮凝結構.................................13
2.3.4 pH值對膨潤土結構效應..........................14
2.4 擴散雙層理論和模式原...............................15
2.4.1 pH值對擴散雙層厚度之影響......................16
2.4.2 陽離子水畫半徑對擴散雙層厚度之影響.............17
2.5 膨潤土之回脹潛能...................................18
2.5.1 回脹發生機制...................................18
2.5.2 回脹行為模式...................................18
2.5.3 影響回脹之因素.................................20
2.5.3.1 阿太堡限度.................................20
2.5.3.2 膨潤土類型.................................20
2.6 處置場工程障壁.....................................21
2.6.1 高放射性廢棄物最終處置.........................21
2.6.2 低放射性廢棄物最終處置.........................23
2.7 緩衝材料與混凝土接觸交互作用.......................25
2.7.1 離子交換.......................................25
2.7.2 地下水入侵.....................................29
2.7.2.1 混凝土溶出失鈣.............................30
2.7.2.2 溶出失鈣之過程與機理.......................30
2.7.2.3 緩衝材料性質變化...........................31
第三章 研究計劃.........................................37
3.1 試驗材料...........................................37
3.1.1 日興土.........................................37
3.1.2 BH膨潤土......................................37
3.1.3 ACI混凝土.....................................38
3.1.4 RPC混凝土.....................................39
3.2 材料基本土壤力學性質分析方法.......................39
3.3 電滲加速試驗.......................................40
3.3.1 電滲加速試驗方法...............................40
3.3.2 緩衝材料試體製作...............................41
3.3.3 ACI混凝土試體製作.............................45
3.3.4 RPC混凝土試體製作.............................45
3.4 電滲加速試驗後續分析...............................46
3.4.1 回脹潛能試驗...................................47
3.4.2 陽離子定量分析.................................48
3.4.3 pH值測量......................................49
3.4.4 XRD繞射分析...................................50
3.4.5 TGA熱重分析...................................50
3.4.6 SEM掃描式電子顯微鏡...........................51
第四章 試驗結果與分析...................................53
4.1 材料基本性質分析...................................53
4.2 緩衝材料與混凝土接觸交互作用之模擬.................55
4.3 交互作用對緩衝材料的影響...........................57
4.3.1 陽離子定量.....................................57
4.3.2 回脹潛能.......................................63
4.3.3 pH值..........................................66
4.3.4 熱重分析(TGA)..................................69
4.3.5 X光繞射分析(XRD)..............................75
4.4 交互作用對混凝土的影響.............................81
4.4.1 熱重分析(TGA)..................................81
4.4.2 X光繞射分析(XRD)..............................84
4.4.3 SEM電子顯微鏡觀測.............................88
第五章 結論與建議.......................................94
5.1 結論...............................................94
5.2 建議...............................................95
參考文獻.................................................96
參考文獻 王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢。
王明光,(2001)。「環境土壤化學」,五南圖書出版。
王守明,(1992),「膨礦土及其加工技術」,礦產保護與利用,第二期,第21-28頁,大陸。
台電公司,(2005)用過核子燃料最終處置計畫書。
台灣電力公司,(2009),低放射性廢棄物最終處置設施,概念設計(B版)。
汪信寶,(2004),「日興土活化改質作為緩衝材料之回脹性質改善效應」,碩士論文,國立中央大大學土木工程研究所,中壢。
陳志霖,(2000),「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木工程研究所,中壢。
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
萬鑫森,(1991),「基礎土壤物理學」,茂昌圖書。
陳炳坤,(2006),「高放射性廢棄物最終處置場緩衝材之膨脹穩定性與微觀結構研究」,碩士論文,國立中央大大學土木工程研究所,中壢。
趙杏媛、張有瑜,(1990),「黏土礦物與黏土礦物分析」,海洋出版社,北京。
洪昆煌、王明光、陳尊賢、賴朝明、何聖賓、李達源,(1996),「土壤化學」,國立編譯館。
吳柏林,(2005),「放射性廢料處置場中砂-皂土混合緩衝材料之壓實性質」,博士論文,國立中央大學土木工程研究所,中壢。
吳平霄、張惠芬、王輔應、郭九杲、趙文霞,(1999),「蒙脫石熱處理產物的掃描電鏡研究」,礦物岩石,第十九卷,第一期,第19-23頁。
吳冠漢,(2004),「緩衝材料於近場環境下之體積穩定性研究」,碩士論文,國立中央大學土木工程研究所,中壢。
劉慧玲,(2001),「台東樟原黏土資源之有機黏土備置研究」,碩士論文,國立成功大學資源工程學系,臺南。
劉隆運,(2010),「低放射性廢棄物最終處置場回填材料之配方與工程特性研究」,碩士論文,國立中央大大學土木工程研究所,中壢。
莊文淵,(1998),「土壤材料之核種遷移吸附特性試驗與研究」,核能研究所內部報告,INER-T2443。
歸鳳鐵、陳強、侯海山,(1999),「高純鈉基膨潤土備製新工藝研究」,非金屬礦,第二十二卷,第四期,第36-37 頁,大陸。
緒方信英、小峯秀雄、申島均、長沢達朗、石井卓,(1994),「所定の透氷係数を有するべントナイト混合土の配合設定方法」,粘土科學,第34卷,第2号,第95-101頁(in Japan)。
高レベル放射性廃棄物の地層処分技術に関する研究開発,(2004),「平成15年度報告」核燃料サイクル開発機構,JNC TN1400 2004-007 (in Japan)。
Abdullah, W.S., Alshibli, K.A., and Al-Zou'bi, M.S. (1999). “Influence of pore water chemistry on swelling behavior of compacted clays.” Applied Clay Science. Vol.15, pp.447-462.
Avner, M., and Petteri, P. (1996). “Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions,” Technical Research Centre of Finland Espoo.
Boh, H.L., McNeal, B.L., and O'Connor, G.A. (1985). Soil Chemistry, 2nd ed., John Wiley & Sons, New York.
Choi, J., Kang, C.H., and Whang, J. (2001). “Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository.” Journal of Environmental Science and Health, Part AToxic/Hazardous Substance & Environmental Engineering, 26(5), 689-714.
Grim, R.E. (1968). Clay mineralogy, McGraw-Hill Book Co., New York.
Greene-Kelly, R. (1952). “Irreversible dehydration in montmorillonite.” Clay Minerals Bulletin, 221-227.
Jo, H.Y., Katsumi, T., Benson, C.H., and Edil, T.B. (2001). “Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions.” Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 557-567.
Komine, H. (2004).“Simplified Evaluation for Swelling Characteristics of Bentonites.” Engineering Geology, 71, 3-4.
Komine, H.(2004).“Simplified Evaluation on Hydraulic Conductivities of Sand-Bentonite Mixture Backfill.” Applied Clay Science, 26, 1-4, 13-19.
Lambe, T.W (2002). “The structure of compacted clay.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 84, No. SM2.
Madsen, F.T., and Muller-Vonmoos, M. (1989). “The swelling behavior of clays.” Applied Clay Science, Vol. 4, pp. 143-156.
Meyer, D., Howard, J.J. (1983). “Evaluation of clays and clay minerals for application to repository sealing.” Office of Nuclear Waste Isolation Technical Report, ONWI-486, 12-30.
Mitchell, J.K. (1993). Fundamentals of Soil Behavior. 2nd Edition. John Wiley & Sons Inc., NY.
Newman, A.C.D. (1987). “Chemistry of clays and clay minerals.” Mineralogical Society Monograph, No. 6, Longman Scientific &Technical, Wiley-Interscience, New York.
Naser A. Al-Shayea. (2001). “The Combined Effect of Clay and Moisture Content on the Behavior of Remolded Unsaturated Soils.” Engineering Geology, 62(4), 319-342.
Pusch, R., (1994). Waste Disposal in Rock, Developments in Geotechnical Engineering, 76. Elsevier Publ. Co.
Seed, H. B., Woodware, R. J., and Lundgren, R. (1962). “Prediction of Swelling Potential for Compacted Clays.” Journal of the Soil Mechanics and Foundation Engineering , ASCE, 88, 53-87.
Takafumi S. , Yukikazu T. (2008). ” Use of a migration technique to study alteration of compacted sand–bentonite mixture in contact with concrete.” Physics and Chemistry of the Earth, 33 , S276–S284.
Taylor, R.K. and Cripps, J.C. (1987). “Weathering Effects: Slopes in Mudrocks and Over-Consolidated Clay.” Chapter 13, Edited by Anderson M.G. and Richard K.S., John Wiley & Sons.
Yong R. N., and Benno, P. W. (1975). Soil Properties and Behavior Elsevier, NewYork.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2011-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明