博碩士論文 983202083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.136.154.103
姓名 陳展維(Jhan-wei Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 合作與競爭賽局策略下之行人模擬
(The Strategy of Pedestrian Simulation Use the Cooperation and Competition Game)
相關論文
★ 緊急疏散指示系統之設計與評估★ 考量擾動因子情況下傳統鐵路時刻表建置合併於高速鐵路時刻表模型之回顧與探討
★ 整合八分樹結構與適應性網格於光達資料重建室內建物三維模型之研究★ 交通改善計畫對區域交通汙染排放之影響-以臺鐵桃園段高架化為例
★ 結合最適控制與養護門檻策略之運輸設施生命週期管理★ 動態混合模式架構下之運輸設施生命週期管理求解方法研究
★ 應用相關均衡賽局與時空網路於行人模擬之研究★ 供應鏈策略應用於營建產業之研究
★ 道路防災保護決策最佳化之研究★ 運輸設施生命週期管理維護策略訂定之研究
★ 臺鐵桃園段高架化建設計畫對區域交通汙染排放影響之探討★ 考量避開擁塞行為之細胞自動機行人模擬模式
★ 動態緊急疏散指示系統之設計與評估★ 市區公車路線調整最佳化模式
★ 市區公車路線及排程最佳化模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 行人移動電腦模擬可用於評估建築物之防災設計與規劃,因此近年來已成為土木防災的相關重要研究領域之一,目前行人模擬的研究大多著重於行人對於其他行人與障礙物之個別反應行為,對於較複雜的行人互動行為(如:等待、禮讓、迴避等)則多未予考量,為增進行人模擬之真實性以及效益,本研究之主要目的為建立納入上述行人互動行為之行人模擬模式。本研究以時空網路描述行人位置的時間與空間變化過程,並使用賽局理論作為行人移動策略的理論依據,賽局理論依照行人是否有合作的觀念或行人間是否有協議可分為合作賽局與競爭賽局兩種,「合作賽局」之求解方式是使用數學規劃,而由於行人是不可分割的整體,必須使用求解較困難的整數規劃以保證行人不被分割,而「競爭賽局」則是先使用「K 最短路徑」演算法找出個別行人的賽局策略,再利用演算法找出有衝突的行人策略,接著求算Pareto 解與納許均衡解。本研究最後假設多個案例來分析評估合作賽局與競爭賽局的行人模擬,整體而言本研究所提出的兩種行人模擬可有效表達不同情境下的行人互動,可提昇行人模擬之真實性,並對於建築物之防災規劃設計有所助益。
摘要(英) Computer models for pedestrian movement can be used to evaluate and support the evacuation designs for buildings. Therefore, the development of pedestrian models has become an important field in civil engineering. In the literature, the related studies have focused on the responses of an individual pedestrian to other pedestrians and obstacles. The more complicated interactions between pedestrians such as waiting, yielding, and detour are rarely considered. To improve the accuracy of pedestrian models, the objective of this research is to include the above behaviors in the pedestrian models in order to reproduce more realistic pedestrian movements.
In this study, the temporal and spatial relationships between pedestrians are described with time-space networks. The game theory is chosen as the decision-making mechanism for pedestrians. When an agreement exists between pedestrians, cooperative games are used to simulation pedestrian behaviors. On the other hand, competitive games are adopted if such agreement does not exist. In this study, the cooperative games are solved using mathematical programming. Because the pedestrians are inseparable, integer programming must be used to ensure that pedestrians are considered as a whole. For competitive games, K shortest path algorithm is adopted to find out each pedestrian’s strategies. An algorithm is developed to identify the strategy pairs with conflicts. Next, Pareto solutions and Nash equilibrium solutions for the pedestrian movement strategies are found. Finally, various scenarios are tested to understand the capability of the proposed approach for simulating pedestrians. Overall, the proposed simulation approach simulates pedestrian interactions under different assumptions effectively and could be useful for improving the evacuation designs for buildings.
關鍵字(中) ★ 賽局理論
★ 行人模擬
★ 整數規劃
★ 時空網路
關鍵字(英) ★ time-space networks
★ integer programming
★ game theory
★ pedestrian simulation
論文目次 摘要 .................................................... i
ABSTRACT ............................................... ii
誌謝 .................................................. iii
目 錄 .................................................. iv
圖 目 錄 ............................................... vi
表 目 錄 ............................................... xi
第一章、 緒論 ...................................................... 1
1.1 研究動機與目的 ...................................... 1
第二章、 文獻回顧 ....................................... 3
2.1 賽局理論 ............................................ 3
2.2 行人模擬 ............................................ 4
2.2.1 個體選擇模式 ...................................... 4
2.2.2 賽局理論 .......................................... 4
2.2.3 細胞自動機 ........................................ 5
2.2.4 社會行為力 ........................................ 6
2.3 時空網路 ............................................ 7
第三章、 研究方法 ....................................... 9
3.1 網格化 .............................................. 9
3.2 時空網路 ........................................... 12
3.3 協調賽局之數學模式與求解 ........................... 16
3.4 競爭賽局 ........................................... 27
3.4.1 K 最短路徑 ....................................... 27
3.4.2 識別衝突路徑 ..................................... 32
3.4.3 Pareto 解 ........................................ 34
3.4.4 納許均衡 ......................................... 37
第四章、 案例測試 ...................................... 40
4.1 參數設定 ........................................... 40
4.2 模式測試 ........................................... 40
4.2.1 直角交叉 ......................................... 40
4.2.2 H 型路口 ......................................... 45
4.2.3 大型情境Ⅰ ....................................... 51
4.2.4 大型情境Ⅱ ....................................... 58
4.2.5 大型情境Ⅲ ....................................... 66
4.2.6 多人多出口 .............................................................................................. 75
第五章、 結論與建議 ............................................................................................................ 78
參考文獻 ................................................................................................................................. 80
附錄 ......................................................................................................................................... 83
附錄1. 直角交叉情境之競爭賽局的納許均衡解 .......................................................... 83
附錄2. H 型路口之競爭賽局的納許均衡解 .................................................................. 87
附錄3. 大型情境Ⅰ之競爭賽局的納許均衡解 .............................................................. 98
附錄4. 大型情境Ⅱ之競爭賽局的納許均衡解 ............................................................ 110
附錄5. 大型情境Ⅲ之競爭賽局的納許均衡解 ............................................................ 122
參考文獻 陳惠國 (2010),「研究方法-理論與實務」,滄海書局。
顏上堯、朱致遠、陳冠霖 (2012), 土石方調派暨傾卸卡車派遣規劃模式之研究,運輸學刊,第24 卷,第3 期。
Antonini, G., Bierlaire, M. and Weber, M. (2006). "Discrete choice models of pedestrian walking behavior " Transportation Research Part B 40,pp. 667-687.
Asano, M., Iryo, T. and Kuwahara, M. (2010). "Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour" Transportation Research Part C 18,pp.842-855.
Asano, M., Iryo, T. and Kuwahara, M. (2009). "A Pedestrian Model Considering Anticipatory Behaviour for Capacity Evaluation Miho" Transportation and Traffic Theory, pp.559~581.
Burstedde, C., Klauck, K., Schadschneider, A. and Zittartz, j. (2001). "Simulation of pedestrian dynamics using a two-dimensional cellular automaton" Physica A 295, pp.507-525.
Chu, C.Y. (2009). "A Computer Model for Selecting Facility Evacuation Design Using Cellular Automata" Computer-Aided Civil and Infrastructure Engineering 24.
Gardner, M. (1970). "Wheels, Life and Other Mathematical Amusements," Scientific American, pp.120-123.
Helbing, D. and Molnar, P. (1995). "Social Force Model for Pedestrian Dynamics," Physical Review, pp.4282- 4286.
Helbing, D., Molnar, P., Farkas, I. and Bolay, K. (2001). "Self-organizing pedestrian movement" Environment and Planning B: Planning and Design 2001, volume 28, pp.361 ~383.
Helbing, D., Molnar, P. and F Schweitzer, F. (1994). "Computer Simulations of Pedestrian Dynamics and Trail Formation" Evolution of Natural Structures ( Sonderforschungsbereich 230 , Stuttgart),pp.229-234.
Helme, M. (1992). "Reducing Air Traffic Delay in a Space-Time Network" Systems, Man and Cybernetics, vol.1 ,IEEE International Conference,pp. 236 - 242.
Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A. and Schreckenberg, M. (2004). "Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics" J. Stat. Mech. P10011.
Kliewer, N., Mellouli, T. and Suhl, L. (2006). "A time-space network based exact optimization model for multi-depot bus scheduling" European Journal of Operational Research 175 ,P.1616-1627.
Klupfel, M. and Meyer-Konig, T. (2005). "Simulation of the Evacuation of a Football Stadium Using the CA Model PedGo" Traffic and Granular Flow ’03 (2005), Part 4, 423-428.
Kuhn, H. W. and Tucker, A. W. (1951). "Nonlinear Programming" Second Berkeley Symp. on Math. Statist. and Prob. (Univ. of Calif. Press,1951),pp. 481-492.
Lemke, C. and Howson, J. (1964). "Equilibrium points of bimatrix games". Journal of the Society of Industrial and Applied Mathematics 12:413–423.
Musse, S. R. and Thalmann, D. (2001). "Hierarchical model for real time simulation of virtual human crowds," IEEE Transactions on Visualization and Computer Graphics, Vol. 7, Issue 2, pp.152-164.
Nash, J. F. (1950). "The Bargaining Problem" Econometrica, Vol. 18, No. 2, pp. 155-162.
Porter, R., Nudelman, E. and Shoham, Y. (2004). "Simple search methods for finding a Nash equilibrium." In AAAI-04, 664–669.
Robin, T., Antonini, G., Bierlaire, M. and Cruz, J. (2009). "Specification, estimation and validation of a pedestrian walking behavior model" Transportation Research Part B 43 ,pp.36-56.
Sandholm, T. W., Gilpin, A. and Conitzer V. (2005). "Mixed-Integer Programming Methods for Finding Nash Equilibria" Computer Science Department. Paper 1458.
Song, D.W. and Panayides, P. M. (2002). "A conceptual application of cooperative game theory to liner shipping strategic alliances" The flagship journal of international shipping and port research, 29:3, pp.285-301.
Blue, V. J. and Adler, J. L. (2001). "Cellular automata microsimulation for modeling bi-directional pedestrian walkways" Transportation Research Part B 35 ,pp.293-312.
Fang, W. F., Yang, L. Z. and Fan, W. C. (2003). "Simulation of bi-direction pedestrian movement using a cellular automata model" Physica A: Statistical Mechanics and its Applications Volume 321, Issues 3-4, pp.633-640.
Wolfram, S. (2002). "A New Kind of Science",Applied mechanics reviews .
Yan, S. Y. and Shih, Y.L. (2007). "A Time-Space Network Model For Work Team Scheduling After A Major Disaster" Journal of the Chinese Institute of Engineers, Vol. 30, No. 1, pp. 63-75 .
Yan, S. Y. and Lin, C. G. (1997). "Airline Scheduling for the Temporary Closure of Airports" Transportation Science February,vol. 31, No. 1,pp. 72-82.
Yen, J. Y. (1971). " Finding The K Shortest Loopless Paths In A Network" Management Science, Vol. 17, No. 11, Theory Series, pp. 712-716.
指導教授 朱致遠(Chih-Yuan Chu) 審核日期 2012-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明