博碩士論文 983203001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.144.28.50
姓名 方君元(June-Yuan Fang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 1-kW級聚光型太陽追蹤器結構變形與追日偏差分析
(Analysis of Structural Deformation and Concentrator Misalignment in a 1-kW Solar Tracker)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在利用有限元素分析法(FEA),探討一個1-kW級聚光型太陽光電系統之太陽追蹤器在受到重力以及風力作用之影響下,其結構變形和聚光模組的追日偏差量。研究中使用之有限元素模型是依據國立中央大學開發的太陽追蹤器實際尺寸而建立。分析的條件分別為無風之自重狀態,以及在風速為7 m/s和12 m/s之情況,在每個風速作用下又各別分為風從太陽追蹤器的正面、側面以及背面吹來三種風向。此外,在不同季節之運轉條件下,聚光模組的傾斜角度又分為三種不同的設定參數。藉由量測此太陽追蹤器二個選定位置在實際操作情況下之應變變化,與模擬結果作比對,可驗證本研究所建立的有限元素分析模型之正確性。比對結果顯示,模擬結果之應變改變趨勢和實驗結果一致,此一致性證實本研究所建立之有限元素分析模型之正確性,確實可適用於分析聚光型太陽光電系統之結構變形。
根據von Mises準則,模擬結果顯示此太陽追蹤器在受到重力加上風速為7 m/s或12 m/s的作用下,各個組件將不會有結構永久變形之情形發生。模擬結果亦顯示此追蹤器在不同追日角度下,聚光透鏡的追日偏差量的變化趨勢與其鏡面法向量方向位移大小的變化趨勢一致。因此,藉由找到擁有較大法向量方向位移的聚光透鏡,即可找到產生較大追日偏差量的聚光透鏡。所有分析情況中,在模組傾角設定為1o(夏至)時,以及風速為12 m/s從太陽追蹤器的側面吹來之情況下,聚光透鏡會有最大的追日偏差量,其值為0.142o。由於此數值小於此聚光模組的可接受角度的0.5o,所以預期此太陽追蹤器在風速為12 m/s的作用下仍可以正常運作,不會有明顯的發電效率下降,同時在正常的運作之下,不會有結構破損之情形發生。
摘要(英) The purpose of this study is to investigate the effects of gravity and wind loadings on structural deformation and concentrator misalignment in a 1-kW high concentrator photovoltaic (HCPV) system using finite element analysis (FEA) approach. A three-dimensional (3-D) FEA model was constructed for a roll-tilt form of solar tracker in an HCPV system developed at the National Central University. Several loading conditions, including gravity only and gravity plus wind speeds of 7 and 12 m/s blowing toward the front (wind direction of 0o), lateral (wind direction of 90o), and rear (wind direction of 180o) sides of the solar tracker, were applied to calculate the stress distribution and structural deformation. Three changeable tilt angles of 24.5o (the spring/autumn equinox), 1o (the summer solstice), and 48o (the winter solstice) for the concentrator modules were also taken into account. Meanwhile, the concentrator misalignment induced by the structural deformation was calculated. A comparison of the simulation and measurement results of strain change at two selected locations in the given solar tracker during field operation was made to validate the constructed FEA model. A reasonable agreement of the simulation and measurement results was found such that the constructed FEA model was validated to be effective in assessment of the structural integrity of an HCPV system.
No structural failure was predicted for all components in the given solar tracker under all the given loading conditions according to von Mises failure criterion. An agreement in the trend of variation of concentrator misalignment and normal displacement of Fresnel lens in each concentrator module was found. Therefore, the concentrator with a greater misalignment could be readily identified from the corresponding normal displacement distribution. For all the cases investigated, the maximum concentrator misalignment was of 0.142o for a wind speed of 12 m/s with wind direction of 90o for the tilt angle of 1o (the summer solstice) and it was within the range of an acceptance angle of 0.5o for the given concentrator module. Consequently, the given HCPV system can operate safely under the effects of wind speeds of 7 and 12 m/s with a good efficiency in power generation.
關鍵字(中) ★ 太陽追蹤器
★ 有限元素分析
關鍵字(英) ★ solar tracker
★ finite element analysis
論文目次 LIST OF TABLES VII
LIST OF FIGURES VVIII
1. INTRODUCTION 1
1.1 High Concentrator Photovoltaic System 1
1.1.1 Concentrator module 2
1.1.2 Solar tracker 3
1.2 Literature Review for Wind Effects on Solar Tracker Structure 5
1.3 Purpose and Scope 7
2. MODELING 10
2.1 Modeling for Structural Deformation 10
2.1.1 Finite element model and material properties 10
2.1.2 Loads and boundary conditions 11
2.2 Modeling for Wind Loads 13
2.2.1 Finite element model 13
2.2.2 Physical properties and boundary conditions 14
2.3 Definition of Concentrator Misalignment 15
3. EXPERIMENTAL SETUP AND PROCEDURE 17
3.1 Experimental Setup 17
3.2 Experimental Procedure 17
4. RESULTS AND DISCUSSION 19
4.1 Effect of Gravity Only 19
4.2 Effect of a Low Wind Speed of 7 m/s 22
4.3 Effect of a Wind Speed of 12 m/s for the Tilt Angle of 24.5o 23
4.4 Effect of a Wind Speed of 12 m/s for the Tilt Angle of 1o 26
4.5 Effect of a Wind Speed of 12 m/s for the Tilt Angle of 48o 28
4.6 Overall Comparison 31
5. CONCLUSIONS 34
REFERENCES 36
TABLES 40
FIGURES 42
Table 1 Material properties of PMMA Fresnel lenses 40
Table 2 Material properties of A6N01S-T5 aluminum alloy 40
Table 3 Material properties of the aluminum frame used in the concentrator modules 40
Table 4 Material properties of C2200 copper alloy 40
Table 5 Material properties of SS400 steel 40
Table 6 Physical properties of air at an atmospheric pressure 41
Table 7 Overall comparisons of maximum stress, normal displacement, and misalignment for various combinations of wind loading and tracking angle 41
Fig. 1 Schematic of a GaInP/GaInAs/Ge triple-junction solar cell structure. [7] 42
Fig. 2 The principle of PV concentration, using Fresnel lens optics. [11] 43
Fig. 3 Major parts in an HCPV system. [10] 44
Fig. 4 Schematic of primary optics: (a) refractive lens; (b) reflective dish. [4] 45
Fig. 5 Two types of secondary optics in which the primary optics is a Fresnel lens: (a) non-imaging mirror; (b) imaging lens. [21] 46
Fig. 6 Typical structures of dual-axis solar trackers: (a) pedestal form; (b) roll-tilt form; (c) roll-tilt form with box frame; (d) turntable form. [4] 47
Fig. 7 Shade balancing principle: (a) sun-pointing sensor; (b) tilted mount of photo sensor; (c) photo sensor in a collimator. [11] 49
Fig. 8 Schematic of a concentrator module 50
Fig. 9 Schematic of the HCPV system model: (a) front view; (b) rear view 51
Fig. 10 Schematic of three selected wind directions 52
Fig. 11 Schematic of the HCPV model at hour angles of (a) 0o and (b) 75o 53
Fig. 12 Schematic of three selected tilt angles of the concentrator modules: (a) 24.5o (the spring/autumn equinox); (b) 1o (the summer solstice); (c) 48o (the winter solstice) 54
Fig. 13 Schematic of wind loading for the given HCPV model with wind blowing toward (a) the front (0o), (b) lateral (90o), and (c) rear (180o) sides of the concentrator modules 55
Fig. 14 (a) Schematic of the simplified HCPV FEA model for calculating the wind pressure; (b) schematic of the computational domain in FEA analysis 57
Fig. 15 Schematic of the computational domain and boundary conditions with wind blowing toward (a) the front (0o), (b) lateral (90o), and (c) rear (180o) sides of the concentrator modules 58
Fig. 16 (a) Wind pressure distributions on the concentrator modules and a cross-sectional view of wind vorticity and (b) velocity field of wind flow around the concentrator modules at hour angle of 60o under the effect of a wind speed of 12 m/s with direction of 90o for the tilt angle of 24.5o 60
Fig. 17 Schematic of structural deformation in a Fresnel lens for calculating the misalignment: (a) iso view; (b) a cross-sectional view 61
Fig. 18 Definition of the angle between the undeformed plane P and deformed plane P' 62
Fig. 19 Two selected locations for strain measurement: (a) a highlighted view from the FEA model; (b) the corresponding photograph 63
Fig. 20 Experimental setup for strain measurement 65
Fig. 21 Comparison of simulated and measured strain variations at various hour angles at locations S1 and S2 66
Fig. 22 Schematic of normal and parallel force components of the weight of concentrator modules 67
Fig. 23 Distributions of von Mises equivalent stress in the lower long steel beam at hour angles of (a) 0o, (b) 30o, (c) 60o, and (d) 75o for the tilt angle of 24.5o under the effect of gravity alone 68
Fig. 24 Comparisons of calculated maximum von Mises stresses in the long steel beam under the effect of gravity alone at various hour angles for three different tilt angles 70
Fig. 25 Comparisons of maximum misalignment and normal displacement of concentrator modules under the effect of gravity only at various tilt angles: (a) 24.5o; (b) 1o; (c) 48o 71
Fig. 26 Distributions of normal displacement in Fresnel lenses at hour angles of (a) 0o, (b) 30o, (c) 60o, and (d) 75o for the tilt angle of 24.5o under the effect of gravity alone 73
Fig. 27 Distributions of normal displacement in Fresnel lenses under the effect of gravity alone: (a) at hour angle of 40o for the tilt angle of 1o; (b) at hour angle of 30o for the tilt angle of 48o 75
Fig. 28 Distributions of maximum von Mises equivalent stress in the long steel beam under the effect of a wind speed of 7 m/s with wind direction of 0o for tilt angles of (a) 24.5o, (b) 1o, and (c) 48o 76
Fig. 29 Distributions of maximum von Mises equivalent stress in the long steel beam under the effect of a wind speed of 12 m/s with wind directions of (a) 0o (hour angle of 20o), (b) 90o (hour angle of 30o), and (c) 180o (hour angle of 20o) for the tilt angle of 24.5o 78
Fig. 30 Comparison of calculated maximum von Mises stresses in the long steel beam at various hour angles under the effect of gravity alone and a wind speed of 12 m/s with three specified wind directions for the tilt angle of 24.5o 80
Fig. 31 Distributions of wind pressure on the concentrator modules under the effect of a wind speed of 12 m/s with directions of (a) 0o (hour angle of 0o), (b) 90o (hour angle of 50o), and (c) 180o (hour angle of 0o) for the tilt angle of 24.5o 81
Fig. 32 Comparisons of maximum misalignment and normal displacement of concentrator modules under the effect of a wind speed of 12 m/s with directions of (a) 0o, (b) 90o, and (c) 180o for the tilt angle of 24.5o 83
Fig. 33 Distributions of normal displacement in Fresnel lenses at hour angles of (a) 0o, (b) 30o, (c) 60o, and (d) 75o for the tilt angle of 24.5o under the effect of a wind speed of 12 m/s with direction of 90o 85
Fig. 34 Distributions of maximum von Mises equivalent stress in the long steel beam under the effect of a wind speed of 12 m/s with wind directions of (a) 0o (hour angle of 20o), (b) 90o (hour angle of 40o), and (c) 180o (hour angle of 30o) for the tilt angle of 1o 87
Fig. 35 Comparison of calculated maximum von Mises stresses in the long steel beam at various hour angles under the effect of gravity alone and a wind speed of 12 m/s with three specified wind directions for the tilt angle of 1o 89
Fig. 36 Distributions of wind pressure on the concentrator modules under the effect of a wind speed of 12 m/s with wind directions of (a) 0o (hour angle of 0o) and (b) 180o (hour angle of 75o) for the tilt angle of 1o 90
Fig. 37 Comparisons of maximum misalignment and normal displacement of concentrator modules under the effect of a wind speed of 12 m/s with directions of (a) 0o, (b) 90o, and (c) 180o for the tilt angle of 1o 91
Fig. 38 Distributions of normal displacement in Fresnel lenses at hour angles of (a) 0o, (b) 30o, (c) 60o, and (d) 75o for the tilt angle of 1o under the effect of a wind speed of 12 m/s with direction of 0o 93
Fig. 39 Distributions of normal displacement in Fresnel lenses at hour angles of (a) 0o, (b)330o, (c) 60o, and (d) 75o for the tilt angle of 1o under the effect of a wind speed of 12 m/s with direction of 90o 95
Fig. 40 Distributions of maximum von Mises equivalent stress in the long steel beam under the effect of a wind speed of 12 m/s with wind directions of (a) 0o (hour angle of 20o), (b) 90o (hour angle of 40o), and (c) 180o (hour angle of 30o) for the tilt angle of 48o 97
Fig. 41 Comparison of calculated maximum von Mises stresses in the long steel beam at various hour angles under the effect of gravity alone and a wind speed of 12 m/s with three specified wind directions for the tilt angle of 48o 99
Fig. 42 Distribution of wind pressure on the concentrator modules at hour angle of 0o under the effect of a wind speed of 12 m/s with wind direction of 180o for the tilt angle of 48o 100
Fig. 43 Comparisons of maximum misalignment and normal displacement of concentrator modules under the effect of a wind speed of 12 m/s with directions of (a) 0o, (b) 90o, and (c) 180o for the tilt angle of 48o 101
Fig. 44 Distributions of normal displacement in Fresnel lenses at hour angles of (a) 0o, (b)630o, (c) 60o, and (d) 75o for the tilt angle of 48o under the effect of a wind speed of 12 m/s with direction of 180o 103
Fig. 45 Schematic of (a) boundary conditions of the bottom surface and (b) an example of wind loadings on the selected concentrator module 105
參考文獻 1. R. A. Messenger and J. Ventre, Photovoltaic Systems Engineering, 2nd Ed., CRC Press, Boca Raton, FL, USA, 2003.
2. A. Goetzberger and V. U. Hoffmann, Photovoltaic Solar Energy Generation, Springer, Berlin, Germany, 2005.
3. D. Y. Goswami, F. Kreith, and J. F. Kreider, Principles of Solar Engineering, 2nd Ed., Taylor & Francis, Philadelphia, PA, USA, 1999.
4. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons Ltd., West Sussex, England, 2003.
5. T. Markvart and L. Castaňer, Solar Cells: Materials, Manufacture and Operation, Elsevier Ltd., Oxford, UK, 2005.
6. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, F. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells,” Applied Physics Letters, Vol. 90, pp. 183516-1-183516-3, 2007.
7. C. Baur, A. W. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Köstler, and G. Strobl, “Triple-Junction III-V Based Concentrator Solar Cells: Perspective and Challenges,” Journal of Solar Energy Engineering, Transactions of the ASME, Vol. 129, pp. 258-265, 2007.
8. M. Yamaguchi, T. Tatsuya, K. Araki, and N. Ekins-Daukes, “Multi-Junction III-V Solar Cells: Current Status and Future Potential,” Solar Energy, Vol. 79, pp. 78-85, 2005.
9. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell and Optimization of Solar Cell’s Structure Focusing on Series Resistance for High-Efficiency Concentrator Photovoltaic Systems,” Solar Energy Materials and Solar Cells, Vol. 90, pp. 1308-1321, 2006.
10. A. Luque, G. Sala, and I. Lugue-Heredia, “Photovoltaic Concentration at Onset of its Commercial Deployment,” Progress in Photovoltaics: Research and Applications, Vol. 14, pp. 413-428, 2006.
11. A. L. Luque and V. M. Andreev, Concentrator Photovoltaics, Springer-Verlag, Berlin, Germany, 2007.
12. G. Willeke, “High Concentration Photovoltaic–State-of-the-Art and Novel Concepts,” pp. 2841-2844 in Proceeding of the 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, Osaka, Japan, 2003.
13. K. Araki, H. Uozumi, M. Yamaguchi, and Y. Kemmoku, “Development of a New 550x Concentrator Module with 3J Cells Performance and Reliability,” in Proceeding of the 15th International Photovoltaic Science & Engineering Conference, October 10-15, Shanghai, China, 2005.
14. M. Hein, F. Dimroth, G. Siefer, and A. W. Bett, “Characterisation of a 300x Photovoltaic Concentrator System with One-Axis Tracking,” Solar Energy Materials & Solar Cells, Vol. 75, pp. 277-283, 2003.
15. K. Araki, “500X to 1000X-R&D and Market Strategy of Daido Steel,” in Proceeding of the 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, March 12-16, San Lorenzo del Escorial, Spain, 2007.
16. I. Lugue-Heredia, C. Martin, M. T. Mananes, J. M. Moreno, J. L. Auger, V. Bodin, J. Alonso, V. Diaz, and G. Sala, “A Subdegree Precision Sun Tracker for 1000x Microconcentrator Modules,” in Proceeding of the 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, Osaka, Japan, 2003.
17. K. Ryu, J.-G. Rhee, K.-M. Park, and J. Kim, “Concept and Design of Modular Fresnel Lenses for Concentration Solar PV System,” Solar Energy, Vol. 80, pp. 1580-1587, 2006.
18. R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a Nonimaging Fresnel Lens for Solar Concentrators,” Solar Energy, Vol. 65, pp. 379-387, 1999.
19. A. Sarno, F. Apicella, M. Pellegrino, C. Privato, and F. Roca, “Enea’s Experience on the PV-Concentrators Technology: the PhoCUS Project,” in Proceeding of the 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, March 12-16, San Lorenzo del Escorial, Spain, 2007.
20. P. Gleckman, “A High Concentration Rooftop Photovoltaic System,” in Proceeding of the SPIE-The International Society for Optical Engineering, August 26-28, San Diego, CA, USA, 2007.
21. T. Markvart, Solar Electricity, 2nd Ed., John Wiley & Sons Ltd., West Sussex, England, 2000.
22. F. R. Rubio, M. G. Ortega, F. Gordillo, and M. López-Martínez, “Application of New Control Strategy for Sun Tracking,” Energy Conversion and Management, Vol. 48, pp. 2174-2184, 2007.
23. P. Roth, A. Georgiev, and H. Boudinov, “Design and Construction of a System for Sun Tracking,” Renewable Energy, Vol. 29, pp. 393-402, 2004.
24. P. Roth, A. Georgiev, and H. Boudinov, “Cheap Two Axis Sun Following Device,” Energy Conversion and Management, Vol. 46, pp. 1179-1192, 2005.
25. N. H. Helwa, A. B. G. Bahgat, A. M. R. E. Shafee, and E. T. E. Shenawy, “Maximum Collectable Solar Energy by Different Solar Tracking Systems,” Energy Sources, Vol. 22, pp. 23-34, 2000.
26. K. K. Chong and C. W. Wong, “General Formula for On-Axis Sun-Tracking System and its Application in Improving Tracking Accuracy of Solar Collector,” Solar Energy, Vol. 83, pp. 298-305, 2009.
27. I. Lugue-Heredia, P. H. Magalhães, G. Quéméré, R. Cervantes, J. M. Moreno, and O. Laurent, “CPV Tracking System: Performance Issues, Specifications and Design,” in Proceeding of the 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, March 12-16, San Lorenzo del Escorial, Spain, 2007.
28. M. Shademan and H. Hangan, “Wind loading on Solar Panels at Different Inclination Angles,” in Proceeding of the 11th American Conference on Wind Engineering, June 22-26, San Juan, Puerto Rico, 2009.
29. A. Fage and F. C. Johansen, “On the Flow of Air Behind an Inclined Flat Plate of Infinite Span,” Proceeding of the Royal Society of London, Series A, Vol. 116, pp. 170-197, 1927.
30. S. Hernández, J. Méndez, F. Nieto, and J. Á. Jurado, “Aerodynamic Analysis of a Photovoltaic Solar Tracker,” in Proceeding of the 5th European-African Conference on Wind Engineering, July 19-23, Florence, Italy, 2009.
31. N. Naeeni and M. Yaghoubi, “Analysis of Wind Flow Around a Parabolic Collector: (1) Fluid Flow,” Renewable Energy, Vol. 32, pp. 1898-1916, 2007.
32. I. Lugue-Heredia, G. Quéméré, P. H. Magalhães, A. F. de Lerma, L. Hermanns, E. de Alarcón, and A. Luque, “Modelling Structural Flexure Effects in CPV Sun Trackers,” pp. 2105-2109 in Proceeding of 21st European Photovoltaic Solar Energy Conference, September 4-8, Dresden, Germany, 2006.
33. C. Cancro, G. Graditi, G. Leanza, F. Pascarella, A. Sarno, and D. Mancini, “Field Testing of the PhoCUS Solar Tracker by Means of a Novel Optoelectronic Device,” in Proceeding of the 4th International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, March 12-16, San Lorenzo del Escorial, Spain, 2007.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明