博碩士論文 983203003 詳細資訊


姓名 葉建宏(Chien-hung Yeh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
(Numerical Study of the Resonant Frequency of Micro-structured Quartz SAW Sensors)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 表面聲波是由縱波及橫波所組成在固體表面運行的彈性波,利用壓電材料的訊號轉換功能製作指叉電極於基板輸出及輸入端製作指叉電極,以形成表面聲波元件。表面聲波元件由於其高靈敏度、高可靠度、可攜帶性及對溫度的穩定性等,在濾波器、感測器及震盪器皆廣泛被使用。由於表面聲波元件需要使用微製程技術,考慮其製作上的耗時且不易,且大部分的研究是以實驗為主,不易了解細部的物理現象,故本研究以數值模擬分析為主。本研究旨在利用有限元素法(FEM)探討利用微製程蝕刻於石英表面增加微結構物,所造成其表面聲波共振頻率偏移情形。為提升表面聲波元件效益並找出相對較佳的結構增加型態,針對不同表面結構的變化方式,模擬結構物數量、高度變化下的頻率響應情況,並針對結構寬度的變化及不同結構負載前後的變化情況進行分析,以期了解表面聲波的傳輸情形及限制。另外,考慮可能的製程方式,針對蝕刻落差基板表面聲波結構進行模擬,探討蝕刻落差對於靈敏度等的影響;同時,思考不同的增加面積方式,針對濕蝕刻情況和乾蝕刻做比較。最後基於減輕模擬計算量的目的,探討使用等效壓力方式替代負載的可能性。
為了確實擷取表面聲波共振頻率並掌握不同模態下的振動趨勢,本研究採用位移頻率響應及插入損失頻率響應,其中插入損失頻率響應由輸入及輸出端的電場頻率響應比來進一步定義。藉由比較理論分析結果並和模擬結果對照,以期掌握方程式的預測程度並找出預測的合理區域。此外,利用微機電製程實際製作將表面聲波元件,並使用網路分析儀量測其插入損失頻率響應,觀察平面基板在負載前後的頻率偏移情況。
模擬分析結果顯示,不論是增加結構數量或是增加結構物高度,其增加的面積對於分辨負載重量的能力皆能夠線性提升,但其效益的提升皆受微結構物幾何尺寸的限制。由結果判斷增加結構數量在靈敏度的提升上約略優於增加高度,並且在實際製作時有相對不易損毀的優勢。對於在蝕刻落差基板上蝕刻不同數量的微結構,表面聲波特性會因為此高度落差而失去,逐漸變的難以分辨。另外,錐狀結構相較於柱狀結構靈敏度較不顯著。
摘要(英) Acoustic waves consist of longitudinal and transverse elastic waves that propagate along the surface of solids. Surface acoustic wave (SAW) usually generated on the surface of a piezoelectric material using interdigital electrodes as signal transformers. Due to its high sensitivity, reliability, portability, and capability of the room temperature operation, the surface acoustic wave device has become an important component as filters, sensors, and oscillators. In recent years, SAW devices as high sensitivity gas sensors and biological sensors have been proposed. They usually require microfabrication processes that are time consuming and difficulty to implement. In this study, we perform numerical simulations in order to understand the insight phenomena in the SAW sensors and prevent the cumbersome fabrication processes. The purpose of this study is to investigate the effects of microstructured surfaces on the resonant frequencies of SAW sensors. Different structure geometries of micro-columns are considered in this study to investigate the sensing performance, including the distribution density, the height, and the width of the columns. Besides, considering the feasibility in the SAW structure fabrication, the simulations of stepped substrate are also discussed to accounts for the wet etch and dry etch situations. Finally, a simplified model using equivalent pressure force is compared.
In order to derive the surface acoustic wave frequency in detail and realize the different vibration modes, the displacement frequency response is simulated. To compare with the measurements, the insertion loss frequency response is used, which is the ratio of electric field frequency response at the input IDTs to that at the output IDTs. Meanwhile, the simplified analytical solutions are also applied in comparing with the simulated results to estimate the extent for frequency shift and search for the appropriate sensing regions. To verify the validity of the simulation, experiments that show the frequency shifts between unload and load situations via the Network analyzer are performed. The simulated results agree well with the experimental data.
According to the simulation results, the increased active surface area is linear proportional to the frequency shift; however, this relation can only be applied to certain geometric conditions. The simulations of increasing the number of surface structures or its height are performed. Judging from the results, increasing the number of surface structure is slightly more effective than increasing its height in promoting the sensing performances. The former structure fabrication is much robust as well. Considering the stepped substrate, the features of the surface acoustic wave lose if the step height is too large. Besides, it is justified that the pyramidal structure is less sensitive to the load than columns structure.
關鍵字(中) ★ 表面聲波
★ 頻率響應
★ 有限元素法
★ 微質量
★ 感測器
★ 插入損失
關鍵字(英) ★ IDT
★ SAW
★ resonant frequency
★ FEM
★ insertion loss
★ mass sensor
論文目次 CHINESE ABSTRACT.......................................i
ENGLISH ABSTRACT.....................................iii
ACKNOWLEDGE............................................v
TABLE OF CONTENTS.....................................vi
LIST OF TABLES......................................viii
LIST OF FIGURES.......................................ix
NOMENCLATURE........................................xiii
Chapter1 Introduction..................................1
1-1 Research Background................................1
1-2 Motivation and Objectives..........................6
1-3 Literature Review..................................7
1-4 Scope of the Thesis...............................11
Chapter2 Background...................................13
2-1 Piezoelectricity............................13
2-2 Introduction to Inter-digital Transducer....21
2-3 Surface Acoustic Wave Devices...............31
Chapter3 Research Methods.............................38
3-1 Study Flow Chart............................38
3-2 Simulation Methods..........................40
3-2.1 Model Description......................40
3-2.2 Mathematical Functions.................42
3-2.3 Mesh Converging Test...................52
3-3 Analysis Methods............................55
3-4 Experimental Methods........................57
Chapter4 Results and Discussion.......................63
4-1 Simulation Data Processing..................63
4-2 Fabrication and Measurements................76
4-3 Active Surface Area Effects.................81
4-3.1 Micro-column Effects...................81
4-3.2 Other Microstructure Effects...........91
Chapter5 Conclusions and Future Work.................100
5-1 Conclusions......................................100
5-2 Future Work................................101
References...........................................102
Appendix.............................................108
參考文獻 [1] Wu, T. T., 2003, "Introduction to Surface Acoustic Wave (表面聲波元件簡介) ", R.O.C. Taiwan.
[2] Wu, L., Shen, C. Y. and Shen, Y. T., 2001, "Surface Acoustic Sensors", Chemistry (The Chinese Chem. SOC.,Taipei), pp. 279-286., R.O.C. Taiwan.
[3] Drafts B., 2001, "Acoustic Wave Technology Sensor", IEEE Transactions on Microwave Theory and Techniques, pp. 795-802.
[4] Benes E., Gr¨oschl M., Seifert F., 1998, "Comparison Between BAW and SAW Sensor Principles", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 1314-1330.
[5] B. Travis, 2000, "SAW Filters and Resonators Provide Cheap and Effective Frequency Control", Electronics Design, Strategy, News (EDN), pp.103-106.
[6] Hung, S. H. and Ko, C. H., 2004, "Perspective Research on Surface Acoustic Wave Sensors (表面聲波感測器之前瞻研究) ", Physic Bimonthly, pp.512-518, R.O.C. Taiwan.
[7] Chang, H. W., Jou, Y. J., Tasi, S. Z., Shiu, H. P., Shr, J. S., 2007, "Preparation and Application of Homemade Surface Acoustic Wave Gas Sensors", Chemistry (The Chinese Chemical Society, Taipei), pp. 487-498, R.O.C. Taiwan.
[8] L. Rayleigh, 1885, "On waves propagated along the plane surface of elastic solid", Proceedings of the London Mathematical Society, pp. 4-11.
[9] 1983, "Technical Terminology", TXC Corporation, R.O.C. Taiwan.
[10] Sauerbrey, G., 1959, "Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung", Zeitschrift für Physik, pp.206-222
[11] Stephen, J. M., Gregory, C. F. and Stephen, D. S., 1994, "Dynamics and Response of Polymer-Coated Surface Acoustic Wave Devices: Effect of Viscoelastic Properties and Film Resonance", Analytical Chemistry, pp.2201-2219.
[12] Julian, W. G., Vijay, K. V. and Osama, O. A., 2001, "Microsensor MEMS and Smart Devices", Wiley.
[13] Wu, L., Shen, J. Y. and Shen, Y. T., 2001, "Surface Acoustic Wave Based Chemical Sensors", Chemistry, R.O.C. Taiwan, pp. 279-286.
[14] Jou, J. M., 2003, "Piezoelectric Mechanic (壓電力學) ", 全華, R.O.C. Taiwan.
[15] Mitsakakis, K., Tsortos, A., Kondoh, J. and Gizeli, E., 2009, "Parametric Study of SH-SAW Device Response to Various Types of Surface Perturbations", Sensors and Actuators B, pp. 408-416.
[16] Powell, D. A., Kalantar-zadeh K. and Wlodarski, W., 2004, "Numerical Calculation of SAW Sensitivity: Application to ZnO/LiTaO3 Transducers", Sensors and Actuators A, pp. 456-461.
[17] Talbi, A., Sarry, F., Moreira, F., Elhakiki, M., Elmazria, O., Le Brizoual, L., Alnot, P., 2004, "Zero TCF ZnO/Quartz SAW Structure for Gas Sensing Applications", IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, pp. 542 – 545.
[18] Wu, D. H. and Chen, H. H., 2005, "Application of Taguchi Robust Design Method to SAW Mass Sensing Device", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 2403-2410.
[19] Wang, W., He, S., Li, S., Liu, M. and Pan, Y., 2007, "Enhanced Sensitivity of SAW Gas Sensor Coated Molecularly Imprinted Polymer Incorporating High Frequency Stability Oscillator", Sensor and Actuators B, pp. 422-427.
[20] Powell, D. A., Kalantar-zadeh K. and Wlodarski, W., 2007, "Spatial Sensitivity Distribution of Surface Acoustic Wave Resonator Sensors", IEEE Sensor Journal, pp. 204-212.
[21] Tsai, H. H., Wu, D. H., Chiang, T. L. and Chen, H. H., 2009, "Robust Design of SAW Gas Sensors by Taguchi Dynamic Method", Sensors, pp. 1394-1408.
[22] 1987, "An American National Standard IEEE Standard on Piezoelectricity", ANSI/IEEE Std 176.
[23] Hofer, M., Finger, N., Kovacs, G., Sch¨oberl, J., Zaglmayr, S., Langer, U. and Lerch, R., 2006, "Finite Element Simulation of Wave Propagation in Periodic Piezoelectric SAW Structures", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 1192-1201.
[24] Chamaly, S., Lardat, R., Pastureaud, T., Dufilie, P., Steichen, W., Holmgren, O., Kuitunen, M., Knuuttila, J. V. and Salomaa, M. M., 2003, "SAW Device Analysis Using a Combination of FEM/BEM Calculations and Scanning Interferometer Measurements", IEEE Ultrasonics Symposium, pp. 294-298.
[25] Rama K. N., Harshal B. N. and Roy P., 2006, "Simulation of One-Port SAW Resonator using COMSOL Multiphysics", Proceeding of the COMSOL Users Conference, Bangalore, pp. 1-5.
[26] Scheerschmidt, G., Kirk, K. J. and McRobbie, G., 2006, "Finite Element Analysis of Resonant Frequencies in Surface Acoustic Wave Devices", Proceedings of the COMSOL Users Conference, Birminghan, pp.1-5.
[27] D. B. Carstensen, T. A. Christensen, and M. Willatzen, 2006, "Surface Acoustic Wave (SAW) Generation in Wurtzite and Zincblende Piezoelectric Materials", Proceedings of the COMSOL Conference, Nordic, pp. 1-7.
[28] Wu, D. H., Jiang, T. L., Chen, S. H. and Tasi, S. H., 2006, "Dynamic Robust Design of SAW Gas Micro-Mass Sensors", 北京科技大學-國立屏東科技大學學術研討會, R.O.C. Taiwan, pp. 1-7.
[29] Hsu, Y. C. Jang, L. S., Le, N. B. and Hsun, S. P., 2006, "ST-Cut Quartz Saw Delay-Line Response Simulation", The 23rd National conference on Mechanical Engineering, the Chinese Society of Mechanical Engineers, R.O.C. Tainan, pp. 482-487.
[30] Tikkaa, A. C., Al-Sarawia, S. F. and Abbottb, D., 2007, "Finite Element Modelling of SAW Correlator", BioMEMS and Nanotechnology III, pp. 679915-1-9.
[31] 2008, "Piezoelectrical Application Modes", COMSOL Multiphysics TM.
[32] D. J. Paradeep, N. R. Krishnan and H. B. Nemade, 2008, "Simulation of Unidirectional Interdigital Transducers in SAW Devices using COMSOL Multiphysics", Proceeding of the COMSOL Users Conference, Hannover, pp. 1-4.
[33] Subramanian, K. R., Sankaranarayanan, S. and Bhethanabotla, V. R., 2008, "Numerical Analysis of High Frequency Surface Acoustic Wave Chemical and Biological Sensors Based on Multilayered Diamond/AlN/LiNbO3 Substrates", AlChE, USA, pp. 1-11.
[34] Zheng, P., Greve, D. W. and Oppenheim, I. J., 2009, "Multiphysics Simulation of the Effect of Sensing and Spacer Layers on SAW Velocity", Proceedings of the COMSOL Conference, Boston, pp. 1-7.
[35] Namdeo, A. K., Ramakrishnan, N., Nemade, H. B. and Palathinkal, R.P., 2009, "FEM Study on Contactless Excitation of Acoustic Waves in SAW Devices", Proceedings of the COMSOL Conference, Bangalore, pp. 1-4.
[36] Jamil, N., Nordin, A. N., Voiculescu, I. and Mel, M., 2010, "Simulation of Surface and Bulk Acoustic Wave MEMS Biosensors", Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Seville, Spain, pp. 1-5.
[37] Jamil, N., Nordin, A. N. and Mel, M., 2010, "Simulation of a Surface Transverse Wave Biosensor for DF-1 Cells", International Conference on Computer and Communication Engineering, Malaysia, pp. 11-13.
[38] Slobodnik, Jr. A. J., 1976, "Surface acoustic waves and SAW materials", Proceedings of the IEEE , pp. 581 – 595.
[39] 2002, "ENA Series Network Analyzer", Agilent Technologies.
[40] Williams, K. R., Gupta, K. and Wasilik, M., 2003, "Etch Rates for Micromachining Processing-PartП", Journal of Microelectromechanical system, pp. 761-778.
[41] Pozar, D. M., 2005, "Microwave engineering", Wiley.
[42] Avramov, I. D., 2006, "Design of Rayleigh SAW Resonators for Applications as Gas Sensors in Highly Reactive Chemical Environments", IEEE International Frequency Control Symposium and Exposition, pp. 381 – 388.
[43] Hsu, Y. C. and Le, N. B., 2008, "Coupling Coefficient Determination Based on Simulation and Experiment for ST-Cut Quartz SAW Delay-Line Response", Microsyst Technol, pp. 615-622.
[44] Benetti, M., Cannata, D., Di Pietrantonio, F., Marchiori, C., Persichetti, P. and Verona, E., 2008, "Pressure Sensor based on Surface Acoustic Wave Resonators", IEEE Sensors, pp. 1024 – 1027.
指導教授 洪銘聰(Ming-tsung Hung) 審核日期 2011-7-18

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡