博碩士論文 983203004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.189.180.76
姓名 曹昌雅(Chung-ya Tsao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 凝膠濃度對胎盤幹細胞貼附及分化之影響
(Gelatin Concentration Affect the Attachment and Differentiation of Placenta-Derived Multi-Potent Cells)
相關論文
★ 摻雜銀或銀銅氮氧化鉭薄膜之製備、特性分析及抗菌行為分析★ 以反應式磁控濺鍍製備Ag2O/TiO2疊層薄膜及其特性之研究
★ 以射頻磁控濺鍍法製備銦鋅氧化物(IZO)透明導電薄膜並探討製程參數對其薄膜之影響★ 以微陽極導引電鍍法沉積奈米氧化鋅薄膜
★ 在一些氣候因素的預測和相關性的一些經濟和農業指標★ Fabrication and Characterization of Polymethylmethacrylate (PMMA) Thin Film by Plasma Polymerization
★ Effects of Diluted Ar in H2/SiH4 on Amorphous Hydrogenated Silicon Thin Film (i-layer) by an Inductive Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) System★ 評估貝里斯Rio Bravo保育管理區內硬木種類之樹高
★ 以HFSS 天線模擬程式為設計LTE Band 41設計天線★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ Economic feasibility for recycling crystalline silicon photovoltaics modules
★ 電漿聚合系統在不同功率下製成聚吡咯薄膜之特性及微結構分析★ Structural Study on BaCeO3 Perovskite Thin Film by Sputtering
★ 用於表面電漿共振光譜的多層金鋁薄膜的設計與優化★ 磁控濺射法製備氧氮化釩薄膜的製備和表徵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要以製備生物相容性之含水凝膠(Gelatin)做為培養人類胎盤幹細胞(Placenta-derived multi-potent cells, PDMCs)之基材。而粉末狀凝膠分為酸性及鹼性,可經由調整水和粉末的比例來控制不同重量百分濃度,本實驗以6%、8%、10%、12%、14%和16%之凝膠水溶液和膠聯劑-戊二醛,依固定比例均勻混和,來製備不同重量百分濃度之凝膠基材。凝膠在製備完成後,以熱重分析儀來檢測其重量百分濃度與凝膠澎潤現象。透過熱微差掃描分析儀(Differential canning calorimetry)來測量粉末狀凝膠有玻璃轉化溫度與熔點,但經由戊二醛膠聯後則沒有玻璃轉化溫度與熔點。
將PDMCs種植在凝膠基材上,並且經由細胞染色計算細胞貼附率。在酸性及鹼性凝膠基材細胞的貼附率皆在70%以上,說明此凝膠基材的表面適合PDMCs的生存;另外經由顯微鏡連續拍攝之影像,透過影像處理可以計算出PDMCs生長在凝膠基材上細胞面積的變化,其中在酸性及鹼性12%凝膠基材,細胞的面積有較明顯的變化。
另外以不同濃度凝膠為基材來誘導PDMCs分化成似神經細胞,細胞貼附在不同濃度的凝膠表面有不同的附著力(Focal adhesion),此為環境刺激;以3-Isobutyl-1-methylxanthine (IBMX)為化學刺激,進而探討在細胞懸浮狀態下的PDMCs與IBMX共同培養在不同重量百分濃度凝膠兩小時之貼附率與分化率。將此實驗與傳統的方式比較,發現在細胞懸浮狀態下就以IBMX誘導使細胞分化為似神經細胞之方法的分化效果較好。
因為不同濃度凝膠造成不同的分化率,因此在最後將PDMCs種植在不同重量百分濃度凝膠基材上,其細胞和不同基材間也有不同的附著力(Focal adhesion),造成細胞骨架排列及產生不同的細胞膜蛋白質,在實驗的最後利用一維電泳的方式來證明細胞貼附在不同重量百分濃度之凝膠基材上,產生出不一樣的細胞膜蛋白質。
摘要(英) This study is mainly in preparation of biocompatible hydrogel-gelatin as a substratum to culture placenta-derived multi-potent cells (PDMCs). There are acidic and basic powder forms of gelatin. They easy to control different weight percentage by adjusting the mixture weight percentage of gelatin. There is glass transition temperature in powder form gelatin. But glass transition temperature disappeared when different weight percentage of gelatin solutions (6%, 8%, 10%, 12%, 14% and 16%) are cross-linked by glutaraldehyde, due to gel formation. The results can be measured by differential scanning calorimetry (DSC). And water content of different weight percentages of gelatin can be measured by thermogravimetry analysis (TGA).
Attachment ratio is calculated by nucleus staining when cell seeding overnight. It illustrated that the surfaces of the substrate are appropriate for PDMCs adhesion. We also calculated contact area of PDMCs adhered on hydrogel by continuous image capture by microscopy.
When PDMCs adhered on different weight percentages of gelatin, there are different focal adhesions in each other, which is an environmental stimulation. And using 3-Isobutyl-1-methylxanthine (IBMX) to induce PDMCs differentiation into neuronal-like cell is chemistry stimulation. PDMCs was treated IBMX as suspension for two hours before seeding, and the differentiation ratio was evaluated when cell has adhered on substrate.
PDMC adhered on different substrates caused different arrangement of the cytoskeleton and produced different membrane proteins. Therefore electrophoresis was used to distinguish different membrane protein production when PDMCs adhered on different substrates.
關鍵字(中) ★ 凝膠
★ 分化
★ 細胞膜蛋白質
★ 胎盤幹細胞
關鍵字(英) ★ Placenta-derived multi-potent cells
★ membrane proteins
★ differentiation
★ gelatin
論文目次 摘 要 II
Abstract III
致 謝 IV
目 錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
第二章 凝膠的製備 5
2.1 凝膠製備方法 5
2.2 熱重分析儀分析凝膠 8
2.3 熱微差掃描分析儀 14
第三章 Placenta-derived multi-potent cells (PDMCs)的培養 19
3.1 顯微鏡系統 19
3.2 細胞培養 21
3.3 PDMCs之貼附率分析 24
3.4 PDMCs接觸面積分析 28
第四章 誘導PDMCs分化為似神經細胞 37
4.1 細胞懸浮液與IBMX混合誘導PDMCs分化為似神經細胞 38
4.2 細胞貼附12小時後以IBMX誘導PDMCs分化為似神經細胞 42
第五章 SDS-PAGE分析PDMCs表面蛋白質 46
5.1 一維電泳 47
結論 49
參考文獻 50
附件一 明膠製備過程與使用之材料及設備 54
附件二 細胞培養與染色之方法及使用的材料設備和配方 56
附件三 偵測細胞邊界程式 63
附件四 誘導PDMC分化成神經的材料及設備 65
附件五 PDMCs細胞膜蛋白質之材料和實驗步驟 66
參考文獻 [1] Mimeault, M., R. Hauke, and S.K. Batra. “Stem cells: A revolution in therapeutics - Recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies”. Clinical Pharmacology & Therapeutics, 2007. 82(3): p. 252-264.
[2] Yen, B. L., H.I. Huang, C.C. Chien, H.Y. Jui, B.S. Ko, M. Yao, C.T. Shun, M.L. Yen, M.C. Lee and Y.C. Chen. “Isolation of multipotent cells from human term placenta.” Stem Cells, 2005 23, 3-9.
[3] Lauffenburger, D. A. and A.F. Horwitz. ”Cell migration: A physically integrated molecular process.” Cell, 1996. 84, 359-369.
[4] Evangelista, M., M. Soncini and O. Parolini. “Placenta-derived stem cells: New hope for cell therapy? Cytotechnology.” 2008, 58, 33-42.
[5] Yen, B. L., C.C. Chien, Y.C. Chen, J.T. Chen, J.S. Huang, F.K. Lee and H.I. Huang. “Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro.” 2008, Tissue Eng. Part A. 14, 9-17.
[6] Huang, H. I. “Isolation of human placenta-derived multipotent cells and in vitro differentiation into hepatocyte-like cells.” Curr. Protoc. 2007, Stem Cell. Biol. Chapter 1, Unit 1E.1.
[7] Wu, C. C., Y.C. Chao, C.N. Chen, S. Chien, Y.C. Chen, C.C. Chien, J.J. Chiu and B. Linju Yen. ”Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells.” 2008, J. Biomech. 41, 813-821.
[8] Cukierman, E., R. Pankov, D.R. Stevens and K.M. Yamada. “Taking cell-matrix adhesions to the third dimension.” Science, 2001, 294, 1708-1712.
[9] Palecek, S. P., J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger and A.F. Horwitz. “Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness.” Nature, 1997, 385, 537-540.
[10] Wiggins, H. and J. Rappoport. “An agarose spot assay for chemotactic invasion. BioTechniques.” 2010, 48, 121-124.
[11] Jacchetti, E., E. Emilitri, S. Rodighiero, M. Indrieri, A. Gianfelice, C. Lenardi, A. Podesta, E. Ranucci, P. Ferruti and P. Milani. “Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture.” J. Nanobiotechnology, 2008, 6, 14.
[12] Dembo, M. and Y.L. Wang. “Stresses at the cell-to-substrate interface during locomotion of fibroblasts.” Biophys. J. 1999, 76, 2307-2316.
[13] Leipzig, N. D. and M.S. Shoichet. “The effect of substrate stiffness on adult neural stem cell behavior.” Biomaterials, 2009, 30, 6867-6878.
[14] Chen, Y. W., S.H. Chiou, T.T. Wong, H.H. Ku, H.T. Lin, C.F. Chung, S.H. Yen and C.L. Kao. “Using gelatin scaffold with coated basic fibroblast growth factor as a transfer system for transplantation of human neural stem cells.” Transplant. Proc. 2006, 38, 1616-1617.
[15] Jose, A. and L.K. Krishnan. “Effect of matrix composition on differentiation of nestin-positive neural progenitors from circulation into neurons.” J. Neural Eng. 2010, 7, 036009.
[16] Jatariu Cadinoiu, A. N., M. Popa, S. Curteanu and C.A. Peptu. “Covalent and ionic co-cross-linking--an original way to prepare chitosan-gelatin hydrogels for biomedical applications.” J. Biomed. Mater. Res. A. 2011, 98, 342-350.
[17] Awad, H. A., M.Q. Wickham, H.A. Leddy, J.M. Gimble and F. Guilak. “Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds.” Biomaterials. 2004, 25, 3211-3222.
[18] Hewitt, A. T., H.K. Kleinman, J.P. Pennypacker and G.R. Martin. “Identification of an adhesion factor for chondrocytes.” Proc. Natl. Acad. Sci. U. S. A. 1980 77, 385-388.
[19] Matsuda, S., H. Iwata, N. Se and Y. Ikada. “Bioadhesion of gelatin films crosslinked with glutaraldehyde.” J. Biomed. Mater. Res. 1999, 45, 20-27.
[20] Tabata, Y. and Y. Ikada. “Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities.” Biomaterials. 1999, 20, 2169-2175.
[21] Bigi, A., G. Cojazzi, S. Panzavolta, K. Rubini and N. Roveri. “Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking.” Biomaterials. 2001, 22, 763-768.
[22] Kang, H. W., Y. Tabata and Y. Ikada. “Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials.” 1999, 20, 1339-1344.
[23] Zhang, F., C. He, L. Cao, W. Feng, H. Wang, X. Mo and J. Wang. “Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering.” Int. J. Biol. Macromol. 2011, 48, 474-481.
[24] Dai, C., Y. Chen and M. Liu. “Thermal properties measurements of renatured gelatin using conventional and temperature modulated differential scanning calorimetry.” J Appl Polym Sci. 99, 2006, 1795-1801.
[25] Mandal, B. B., A.S. Priya and S.C. Kundu. “Novel silk sericin/gelatin 3-D scaffolds and 2-D films: Fabrication and characterization for potential tissue engineering applications.” Acta Biomater. 5, 2009, 3007-3020.
[26] Bozzini, S., P. Petrini, L. Altomare and M.C. Tanzi. “Fabrication of chemically cross-linked porous gelatin matrices.” J. Appl. Biomater. Biomech. 7, 2009, 194-199.
[27] Chang, C. J., M.L. Yen, Y.C. Chen, C.C. Chien, H.I. Huang, C.H. Bai and B.L. Yen. “Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma.” Stem Cells. 24, 2006, 2466-2477.
[28] Yakimets, I., N. Wellner, A.C. Smith, R.H. Wilson, I. Farhat and J. Mitchell. “Mechanical properties with respect to water content of gelatin films in glassy state.” Polymer. 46, 2005, 12577-12585.
[29] Anca N. Ja tariu (Cadinoiu), Marcel Popa, Silvia Curteanu, Ca ta lina A. Peptu1. “Covalent and ionic co-cross-linking—An original way to prepare chitosan–gelatin hydrogels for biomedical applications.” J. Biomed Mater Res A. 2011, Sep 1; 98 (3):342-50.
[30] Chatterji, P. R. “Gelatin with hydrophilic/hydrophobic grafts and glutaraldehyde crosslinks.” J Appl Polym Sci. 1989, 37, 2203-2212.
[31] Chimenti, I., G. Rizzitelli, R. Gaetani, F. Angelini, V. Ionta, E. Forte, G. Frati, O. Schussler, A. Barbetta, E. Messina, M. Dentini and A. Giacomello. “Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs.” Biomaterials. 2011, 32, 9271-9281.
[32] Hwang, C. M., S. Sant, M. Masaeli, N.N. Kachouie, B. Zamanian, S.H. Lee and A. Khademhosseini. “Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.” Biofabrication. 2010, 2, 035003.
指導教授 李泉(Chuan Li) 審核日期 2012-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明