博碩士論文 983203005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.234.214.113
姓名 陳紹瑀(Shao-Yu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 1.7 伏特奈米發電機-以直寫式近場電紡織奈米纖維並透過原位極化製作於可撓性基底
(1.7 V Nanogenerator realized via direct-write, in situ poled near-field electrospun nanofibers on flexible substrate.)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 以數值模擬與實驗驗證研究 精密深溝滾珠軸承多道次溫間鍛造製程 -缺陷分析與模具設計合理化
★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究★ 釩氧化還原液流電池中多孔性碳電極在壓縮與電鍍後之電性、機械性質與型態分析
★ 近場電紡絲技術應用於可控制多根奈米纖維生成、選擇性沉積及奈米流道之製備★ 奈米射出成形技術及光學特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文為利用近場電紡織技術,製作與研究壓電奈米纖維發電機,並且改良及比較壓電纖維的電紡織生產技術效率,主要重點為(1)利用近場電紡織技術可控制單根壓電奈米纖維排列特性製造奈米發電機,並且設計串聯與並聯兩種不同電極排列方式的基板(2)奈米發電機量測與應用,(3)藉由泡棉材料的多孔特性改良傳統電紡織技術的生產效率。
(1)利用近場電紡織技術製作壓電奈米纖維發電機
利用近場電紡織與電極圖形設計製作高電壓輸出的壓電奈米發電機。使用纖維狀的壓電高分子材料製造的奈米發電機具有高能量轉換效率且穩定輸出,故本章學生以直寫(direct-write)方式將壓電高分子PVDF(聚偏氟乙烯)沉積在可撓性基底上製作PVDF的奈米發電機。並且設計一個簡單但效果良好的電壓和電流疊加電極基板。
(2)奈米發電機量測與應用
同時把PVDF奈米纖維陣列串聯和並聯的條件下,製作完成的奈米發電機能夠產生約1.7 V電壓和300nA電流的峰值輸出。這一成果將原本過去只有單根壓電奈米纖維的電壓和電流輸出大幅度增加。此外學生將奈米發電機的交流輸出進行整流,顯示了儲能和充電應用的技術可行性。並且針對發電機的穩定性與人體應用分別進行測試。
(3)藉由泡棉材料的多孔特性改良傳統電紡織技術的生產效率
本章研究內容為改良傳統電紡織技術之生產效率。學生以不同尺寸的多孔材料作為電紡織噴嘴的裝置,取代過去僅有單一噴嘴的設計。且使用10%的PVDF(聚偏氟乙烯)和7%的PEO(氧化聚乙烯)高分子溶液分別作為提高生產率實驗的材料作為驗證。該電紡織生產方式(藉由泡棉材料)可以在相對較低的電壓(DC6〜7KV)下生產大量奈米纖維。實驗結果顯示,每單位面積的射流數為85〜150 jets/cm2,比傳統的單一噴嘴高一到兩個數量級。
摘要(英) This thesis mainly research fabrication of nanogenerator, piezoelectric technology and application in electrospinning. The focus of the study is (1) Fabrication of nanogenerator via near-field electrospinning process, (2) Measurement and application of nanogenerator, (3) High-Throughput production of nanofibrous mats via a porous materials electrospinning Process.
(1)A Facile Electrode Pattern for Voltage and Current Superposition of Near-field Electrospun Piezoelectric Nanogenerator–Fabrication and Design
Harvesting energy from human motion in a routine exercise is a promising and viable approach for powering a wide range of wireless mobile electronics in our daily life. Direct-write piezoelectric polymeric nanogenerator is robust and high energy conversion efficiency such that tiny physical motions/disturbances over human operation frequencies can be stimulated and energy scavenged. Here, we demonstrate a direct-write polymeric poly (vinylidene fluoride) PVDF nanogenerator on the flexible substrate and a simple scaling-up electrode design for easy superposition of both voltage and current.
(2) A Facile Electrode Pattern for Voltage and Current Superposition of Near-field Electrospun Piezoelectric Nanogenerator-Measurement and Application
The nanogenerators fabricated using arrays of PVDF nanofibers in parallel and in serial configurations which are capable of producing a peak output voltage of ~1.7 V and the current reached up to 300nA. This achievement is two order of magnitude increases in both voltage and current output compared with conventional near-field setup for only one electrospun nanofiber. In addition, the alternating current output of the nanogenerator is rectified and demonstrates the technological feasibility for energy storage and recharging applications. This work shows a practical and versatile technique of using direct-write electrospun nanogenerators for powering mobile and wireless microelectronic devices.
(3)High-Throughput Production of Nanofibrous Mats Via a Porous Materials Electrospinning Process
A facile method is presented for the electrospinning of multiple polymer jets into nanofibers. The experiments in this study electrified 7 wt% PEO (polyethylene oxide) and 10 wt% PVDF (polyvinylidene fluoride) solutions and adopted porous materials(bars with various dimensions) to enhance the productivity of the electrospinning process. The proposed electrospinning mechanism can be used to mass produce nanofibers at a relatively lower voltage (D.C. 6~7 kV) and obtain a remarkable increase in throughput. The experimental results showed that the jets per area were on the order of 85~150jets/cm2, which is one to two orders of magnitude higher than the conventional single needle electrospinning process and can easily surpass the magnetic needleless method by a factor of 3.3 to 5.8. The proposed method of using porous materials as electrospinning devices (nozzles) should contribute to the advancement of next-generation, large-scale electrospinning systems for nanofiber fabrication.
關鍵字(中) ★ 壓電材料
★ 奈米纖維
★ 無針頭電紡織
★ 近場電紡織技術
★ 奈米發電機
關鍵字(英) ★ Nanofiber
★ Needleless electrospinning
★ Piezoelectric material
★ Nanogenerator
★ Near-field electrospinning (NFES)
論文目次 摘要 IV
Abstract V
誌謝 VIII
Content IX
圖目錄 XI
第一章緒論 1
1-1電紡織技術 1
1-2奈米發電機 2
1-3無針式電紡織 4
1-4論文架構 5
第二章利用近場電紡織技術製作壓電奈米纖維發電機多根奈米纖維生成技術 6
2-1導論 6
2-2實驗 7
2-2-1 電紡織溶液 7
2-2-2電紡織設備架構 8
2-2-3奈米發電機製作 8
2-3結果與討論 9
第三章奈米發電機量測與應用 12
3-1實驗 12
3-1-1 量測設備架構 12
3-1-2 電壓量測 12
3-1-2 電流量測 12
3-2結果與討論 13
第四章藉由泡棉材料的多孔特性改良傳統電紡織技術的生產效率 18
4-1實驗 18
4-1-1 電紡織溶液 18
4-1-2 改良式電紡織設備架構 18
4-2結果與討論 19
第五章結論 25
參考文獻 27
附錄 31
參考文獻 [1] I. S. Yeo, J. E. Oh, L.Jeong, T. S. Lee, S. J. Lee, W. H. Park and B.M. Min,”Biomacromolecules,9,1106-1116,(2008)
[2] Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng.12, 1197-1211, (2006)
[3] X. Wang, C. Drew, S. H. Lee, K. J.Senecal, J. Kumar and L. A. Samuelson, Nano Lett. 2,1273-1275,( 2002)
[4] W. E.Teo and S. Ramakrishna,Nanotechnology,17,R89-106,(2006)
[5] A. L.Yarin and E.Zussman, 45,2977-2980,( 2004)
[6] Y. Liu, and J. H. He, Int. J. Nonlin. Sci. Num. Sim.8, 393-396,( 2007)
[7] X. Wang, H.Niu, T. Lin and X. Wang, Polym.Eng.Sci. 49,1582-1586,(2009)
[8] A. L.Yarin, W.Kataphinan and D. H.Reneker, J.Appl.Phys. 98,064501-12,(2005)
[9] D. H.Reneker, A. L.Yarin, H. Fong and S.Koombhongse, J.Appl.Phys. 87,4531-4547,(2000)
[10] J. M.Deitzel, J. D.Kleinmeyer, J. K.Hirvonen and N. C. Beck Tan, Polymer,42,8163-8170,(2001)
[11] A.Vaseashta,Appl.Phys.Lett. 90,093115-3,(2007)
[12] D. Sun, C. Chang, S. Li and L. Lin, Nano Lett. 6,839-842,(2006)
[13] C. Chang, K.Limkrailassiri and L. Lin, Appl.Phys.Lett. 93,123111-3,(2008)
[14] C. Chang, V. H. Tran, J. Wang, Y.K.Fuh and L. Lin, Nano Lett. 10 726-731,( 2010).
[15] S. Roundy and P. Wright, Smart Mater. Struct.13, 1131, (2004)
[16] A. Lal, R. Duggirala and H. Li, Pervasive Computing Jan.-Mar.53,(2005)
[17] S. Platt, S. Farritor and H. Haider, IEEE/ASME Trans. on Mechatronics 10, 240 (2005)
[18] S. Priya, Appl. Phys. Lett. 87, 184101 (2005)
[19] H. W. Kim, S. Priya, and K. Uchino, Jpn. J. Appl. Phys.48, 5836 (2006)
[20] H. Kim, S. Priya, H. Stephanou and K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control.4, 1851 (2008)
[21] G. Zhu, R. Yang, S. Wang and Z. L. Wang, Nano Lett.10, 3151 (2010)
[22] Z. L. Wang, J. H. Song. Science312, 242 (2006)
[23] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Science316,102 (2007)
[24] C. Chang, V. H. Tran, J. Wang, Y. Fuh, L. Lin, Nano Lett.10, 726 (2010)
[25] Y. Qin, X. D. Wang, Z. L. Wang, Nature451, 809 (2008)
[26] Y. Qin, et al., Nano Lett.10, 34 (2010)
[27] R. Yang, Y. Qin, L. Dai, Z. L. Wang, Nat. Nanotechnol.34 (2009)
[28] S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. Yang, Z. L. Wang, Nat.Nanotechnol.5, 367 (2010)
[29] D. Choi, et al. Adv. Mater.22, 2187 (2010)
[30] X. Chen, S. Xu, N. Yao, and S. Yong, Nano Lett.10, 2133 (2010)
[31] Y. Hu, Y. Zhang, C. Xu, G. Zhu, and Z. L. Wang, Nano Lett.10, 5025 ( 2010)
[32]B Ding, E Kimura, T Sato, S Fujita, and S Shiratori, Polymer45(6), 1895-1902(2004).
[33]G Kim, Y-S Cho and W D Kim, Eur.Polym.J42(9),2031-2038(2006).
[34]S A Theron, A L Yarin, E Zussman and E Kroll,Polymer 46(9), 2889-2899(2005).
[35]Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L and Chaloupek J PCT WO 2005/02 4101 A1 (2005).
[36]Xin Wang, HaitaoNiu, Tong Lin and Xungai Wang, Polymer Engineering & Science 49(8):1582-1586(2009).
[37]A L Yarin, E Zussman, Polymer 45(9), 2977–2980(2004).
[38]Ji-Huan He, Yong Liu, LanXu, Jian-Yong Yu, Gang Sun, Chaos. Solitons and Fractals 37, 643–651(2008).
[39]Yong Liu, Ji-Huan He, International Journal of Nonlinear Sciences and Numerical Simulation8(3), 393-396(2007).
[40] O O Dosunmu1, G G Chase, W Kataphinanand D H Reneker, Nanotechnology 17,1123–1127(2006).
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明