博碩士論文 983203008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.216.94.152
姓名 陳致豪(Zai-Hao Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用於內連線準直排列碳奈米管之沈積
(Deposition of vertically aligned carbon nanotube for interconnect application)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗使用傳統光學微影(Optical photolithography)的方式,利用I-line光學步進機系統進行曝光,接著顯影出我們設計好的圖案,經過蝕刻過程蝕刻出內連線引洞結構,在經過電漿前處理,使鎳薄膜催化劑轉為顆粒狀,最後利用低溫化學氣相沈積從引洞中成長出奈米碳管,且由奈米碳管取代金屬內連線,以達成本實驗之目的。在這之前我們會先以沒有圖案的金屬基板來成長奈米碳管,藉由調整實驗參數成長出垂直排列的奈米碳管,設定的參數包括: 鎳薄膜厚度,電漿前處理的參數;如: ICP power、Bias power、時間及氣體流量比例,以及LT-CVD的成長參數;如: 碳源比例、氣體總流量及壓力,並用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)及拉曼散射分析來觀察參數對奈米碳管形態以及品質的影響,最後再將最佳的實驗參數應用在有引洞結構的基板,之後鍍上上電極金屬Ti,完成由奈米碳管做為垂直導線的二極體元件,再由I-V量測系統量其電性。
由本實驗的結果可以發現,隨著鎳薄膜厚度的減少,奈米碳管管徑逐漸減少。而經過電漿前處理後,成長出的奈米碳管管徑有明顯變小。氫電漿前處理比氨電漿前處理具有較強的蝕刻效果。進行電漿前處理中必頇要有Bias power的輔助,不然電漿中的陽離子沒有足夠的加速度蝕刻鎳薄膜成為顆粒狀。要在低碳源比例下成長出奈米碳管,並頇經過電漿前處理將鎳薄膜蝕刻成為較小的鎳顆粒。成長奈米碳管中的氣體流量會影響碳源是否有足夠時間解離並進入鎳顆粒當中。成長奈米碳管中過多的氫氣會造成鎳顆粒的蝕刻以及影響奈米碳管品質。本實驗中,鎳薄膜為1 nm在TiN金屬基板上,電漿前處理參數: ICP power為100 W、Bias power為50 W、壓力為100 mtorr、H2與Ar流量為100/20 sccm、基板溫度為400℃及前處理時間為3分鐘,成長奈米碳管參數:成長溫度550 ℃、壓力760 Torr、
ii
Ar/H2/Are 流量為400/100/100 sccm及成長時間 15分鐘,所成長出的奈米碳管有較好的品質以及密度。而鎳薄膜為1 nm (南科)在TiN金屬基板上,電漿前處理參數(中山): ICP power為100 W、Bias power為100 W、壓力為20 mtorr、H2與N2流量為100/20 sccm、基板溫度為350℃及前處理時間為3分鐘,成長奈米碳管參數:成長溫度550 ℃、壓力760 Torr、 Ar/H2/Are 流量為485/15/100 sccm及成長時間 15分鐘,所成長出的奈米碳管,有較好的奈米碳管品質,管徑最小為8.4 nm,平均管徑約為11 nm。
摘要(英) This research is using low temperature chemical vapor deposition (LTCVD) to grow carbon nanotubes (CNTs) for interconnect application. We use integrated-circuit (IC) photolithography to manufacture the structure of interconnect via in silicon wafer, than development of hydrogen/ammonia plasma pretreatment for transforming Ni film into small and dense catalytic nanoparticles to growth of carbon nanotubes (CNTs) with nickel (Ni) catalyst on (TiN) layer by thermal CVD system with ethanol precursor. We design a single-via and array-via to grow carbon nanotubes (CNTs), finally, deposit Ti to connect with CNTs to accomplish CNT diode structure and make I-V system to analysis diode structure. Use diode structure before ,we were used of SEM, Raman spectroscopy and TEM system to analysis plasma pretreatment and CNT growth parameters on the blanket substrate.
We find out that carbon nanofibers (CNFs) diameter increases with the catalyst thickness. The carbon nanotubes (CNTs) decreases with plasma pretreatment, H2 plasma has higher etching effect than NH3 plasma. Low plasma and bias power with proper hydrogen flow rate are essential to transform thin Ni film into small and dense nanoparticles by the plasma pretreatment. Small nickel particles require less carbon source for CNT growth. Dense carbon nanotubes (CNTs) were attained by the conditions : plasma pretreatment (NDL)─ ICP = 100 W, Bias = 50 W, Pressure = 100 mtorr, H2/Ar = 100/20 sccm, Temp.= 400 ℃, Time = 3 min.;CNT growth ─ Pressure = 760 torr, Ar/H2/Are = 400/100/100 sccm, Temp. = 550 ℃. Dense carbon nanotubes (CNTs) were attained by the conditions : plasma pretreatment (中山大學) ─ ICP = 100 W, Bias = 100 W, Pressure = 20 mtorr, H2/N2 = 100/20 sccm, Temp.= 350 ℃, Time = 3 min.;CNT growth ─ Pressure = 760 torr, Ar/H2/Are = 485/15/100 sccm,
iv
Temp. = 550 ℃.
關鍵字(中) ★ 奈米碳管
★ 電漿前處理
★ 引洞結構
★ 內連線
關鍵字(英) ★ carbon nanotubes
★ plasma pretreatment
★ via
★ interconnect
論文目次 中文摘要 ................................................................................................................ i
英文摘要 .............................................................................................................. iii
謝誌 ....................................................................................................................... v
目錄 ...................................................................................................................... vi
圖目錄 .................................................................................................................. ix
表 目 錄 ............................................................................................................ xiii
符 號 說 明 ...................................................................................................... xiv
第一章 緒論 ......................................................................................................... 1
1-1 前言 ......................................................................................................... 1
1-2 文獻回顧 ................................................................................................. 2
1-3 研究動機與目的 ..................................................................................... 7
第二章 奈米碳管的介紹 ................................................................................... 10
2-1 奈米碳管的起源 ................................................................................... 10
2-2 奈米碳管的結構 ................................................................................... 12
2-3 奈米碳管之成長機制 ........................................................................... 16
2-4 奈米碳管之合成技術 ........................................................................... 17
2-5 奈米碳管之特性與應用 ....................................................................... 23
第三章 實驗方法與設備 ................................................................................... 28
3-1 實驗流程 ............................................................................................... 28
3-2 金屬鎳薄膜厚度檢測方法 ................................................................... 30
3-3 二極體元件製作流程 ........................................................................... 31
3-3-1 實驗儀器簡介 ............................................................................ 35
3-3-2 量測設備 .................................................................................... 41
3-4 電漿基礎原理 ....................................................................................... 43
3-5 HDP-CVD 電漿前處理之步驟 ............................................................ 44
3-6 LT-CVD 成長奈米碳管之步驟 ............................................................ 46
3-7 氣泡式系統說明 (Ar bubbler system) ................................................ 47
3-8 奈米碳管品質的分析 ........................................................................... 49
第四章 結果與討論 ........................................................................................... 50
4-1 催化劑薄膜厚度之檢測 ....................................................................... 50
4-2 製程參數對奈米碳管形態的影響 ...................................................... 55
4-2-1 鎳薄膜厚度對於奈米碳管形態的影響 .................................... 55
4-2-2 酒精氣體流量對於奈米碳管形態的影響 ................................ 58
4-2-3 電漿前處理Bias power對奈米碳管形態的影響 .................... 62
4-2-4 電漿前處理ICP power對鎳薄膜之影響 ................................. 64
4-2-5 氫電漿前處理ICP power對奈米碳管之影響 ......................... 67
4-2-6 氨電漿前處理ICP power對奈米碳管之影響 ......................... 72
4-2-7 比較有無電漿前處理對奈米碳管之影響 ................................ 76
4-2-8 電漿前處理Bias power對奈米碳管形態的影響 .................... 78
4-2-9 成長氣體總流量對奈米碳管形態的影響 ................................ 81
4-2-10 無電漿前處理在低碳源比例下成長奈米碳管 ...................... 84
4-2-11 比較不同的電漿前處理時間對奈米碳管形態的影響 .......... 86
4-2-12 比較成長奈米碳管中氫氣對奈米碳管形態的影響 .............. 90
4-3 奈米碳管成長在引洞結構之結果分析 .............................................. 93
4-3-1 比較不同的電漿前處理時間在引洞結構成長奈米碳管之影響 ............................................................................................................... 95
4-3-2 比較不同的電漿前處理時間在引洞結構成長奈米碳管之I-V電性量測 ............................................................................................... 99
4-3-3 比較不同的電漿前處理時間在少量氫氣中對於引洞結構成長奈米碳管之影響 ................................................................................. 102
第五章 結果與討論 ......................................................................................... 106
第六章 未來發展 ............................................................................................. 107
參考文獻 ........................................................................................................... 108
參考文獻 [1] Wolfgang Arden et al., Interconnect, 2009 ITRS, Europe, June 21, (2010).
[2] S. Iijima, ―Helical microtubules of graphitic carbon‖, Nature 354,(1991), pp. 56.
[3] S. S. Fan, M.G. Ghapline,N.R. Franklin, T.W. Tombler, A. M. Cassell, and H.J. Dai, ―Self-oriented regular arrays of carbon nanotubes and their field emission properties‖, Science 283, (1999), pp. 512.
[4] X. Ma, E. Wang, W. Zhou, D.A. Jefferson, J. Chen, S. Deng, N. Xu, J. Yuan, ―Polymerized carbon nanobells and their field-emission properties‖, Appl. Phys. Lett. 75,(1999), pp. 3105.
[5] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, ―Fully sealed high-brightness carbon-nanotube field-emission display‖, Appl. Phys. Lett. 75,(1999), pp. 3129.
[6] W. A. de Heer, A. Chatelain, D. Ugarte, ―A carbon nanotube field-emission electron source‖, Science 270,(1995), pp. 1179.
[7] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384,(1996), pp. 147.
[8] S. Wong, E. Joselevich, A. Woolley, C. Cheung, C. Lieber, ―Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology‖, Nature 394,(1998), pp. 52.
[9] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, ―Storage of hydrogen in single-walled carbon nanotubes‖, Nature 386,(1997), pp. 377.
[10] H. M. Cheng, Q. H. Yang, and C. Liu, ―Hydrogen storage in carbon nanotubes‖, Carbon 39,(2001), pp. 1447.
[11] Wei BQ, Vajtai R, Ajayan PM, ―Reliability and current carrying capacity of carbon nanotube‖, Appl. Phys. Lett. 79,(2001), pp. 1172.
[12] Kim P, Shi L, Majumdar A, McEuen PL, ―Thermal transport measurements of individual multiwalled nanotubes‖, Phys. Rev. Lett. 87,(2001). pp. 215502.
[13] Frank S, Poncharal P, Wang ZL, de Heer WA, ―Carbon nanotube quantum resistors‖, Science 280,(1998), pp. 1744.
[14] J. Dijon1, H. Okuno1, M. Fayolle, T. Vo, J. Pontcharra, D. Acquaviva, D. Bouvet, A. M. Ionescu, C. S. Esconjauregui, B. Capraro, E. Quesnel1, J. Robertson, ―Ultra-high density Carbon Nanotubes on Al-Cu for advanced Vias‖, International Electron Device Meeting, San Francisco, U.S.A., Dec. 6-8, (2010), pp. 33.4.1-33.4.4
[15] Masayuki Katagiri, Yuichi Yamazaki, Naoshi Sakuma, Mariko Suzuki, and Tadashi Sakai, ―Fabrication of 70-nm-diameter Carbon Nanotube Via Interconnects by Remote Plasma-Enhanced Chemical Vapor Deposition and Their Electrical Properties‖, International Interconnect Technology Conference, Sapporo, Japan , June 1-3, (2009), pp. 44-46.
[16] Hoenlein W, Kreupl F, Duesberg GS, Graham AP, Liebau M, Seidel R, ―Carbon nanotubes for microelectronics: status and future prospects‖, Mater Sci Eng C—Biomim Supramol Syst 23,(2003), pp. 663.
[17] J. Guo, M. Lundstrom, S. Datta, ―Performance projections for ballistic carbon nanotube field-effect transistors‖, Applied Physics Letters 80,(2002), pp. 3192.
[18] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, ―Vertical scaling of carbon nanotube field-effect transistors using top gate electrode‖, Applied Physics Letters 80,(2002), pp. 3817.
[19] A. Jacey, J. Guo, D. B. Farmer, Q. Wang, R. G. Gordon, M. Lundstrom, H.
Dai, ―Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics‖, Nano Letters 4,(2004), pp. 447.
[20] S. Tans, A. Verschueren, C. Dekker, ―Room-temperature transistor based on a single carbon nanotube‖, Nature 393, pp. 49.
[21] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, W. Honlein, ―C arbon nanotubes in interconnect applications‖, Microelectronic Engineering 64, (2002), pp. 399–408.
[22] Mizuhisa Nihei, Masahiro Horibe, Akio Kawabata and Yuji, ―Carbon nanotube vias for future LSI interconnects‖, International Interconnect Technology Conference, June 7-9, (2004) , pp. 251-253.
[23] J. Robertson, C. S. Esconjauregui, B. C. Bayer, F. Yan, G. Zhong, J. Dijon, H. Okuna, ―Carbon Nanotube Growth for Vias and Interconnects‖, Solid State Devices and Materials, Japan, Tokyo, (2010), pp842-843.
[24] M. Cantoro, S. Hofmann, C. Mattevi, S. Pisana, A. Parvez,A. Fasoli, C. Ducati,V. Scardaci,A. C. Ferrari and J. Robertson,―Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes‖, Journal of Applied Physics 105, (2009), DOI. 064304.
[25] M. Cantoro, S. Hofmann, S. Pisana, C. Ducati, A. Parvez, A.C. Ferrari, J. Robertson,―Effects of pre-treatment and plasma enhancement on chemical vapor deposition of carbon nanotubes from ultra-thin catalyst films‖, Diamond & Related Materials 15, (2006), pp. 1029–1035.
[26] Yi-Ling Huang, Chung-Min Tsai, Huan-Chieh Su, Kuo-Liang Liu, Ren-Hong Huang, and Tri-Rung Yew,―Low temperature electroless Ni–P catalyst deposition enhanced by UV exposure for carbon nanofiber and nanotube growth‖, Journal of The Electrochemical Society 157, (2010), pp.K21-K24.
[27] S. Iijima, T.Ichihashi, ―Single-shell carbon nanotubes of 1-nm diameter‖, Nature 363,(1993), pp. 603
111
[28] D.S. Bethune, C.H. Kiang, M.S. Deveries, ―Cobalt-catalysed growth of carbon nanotubes with single-atomic-layers wells‖, Nature 363 (1993), pp. 605.
[29] TH. Henning, F. Salama, ―Carbon in the universe‖, Science 282,(1998), pp. 2204.
[30] R.T.K. Baker, P.S. Harries, Marcel Dekker, ―Chemistry and Physics of Carbon‖, New York 83,(1978).
[31] R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen,―Continuous production of aligned carbon nanotubes: a step closer to commercial realization‖, Chem. Phys. Lett. 303,(1999), pp. 467.
[32] Yutaka Ishikawa and Kei Ishizuka,―Growth of Single-Walled Carbon Nanotubes by Hot-Filament Assisted Chemical Vapor Deposition below 500 ℃‖, Applied Physics Express 2, (2009), DOI. 045001.
[33] Yuichi Yamazaki, Naoshi Sakuma, Masayuki Katagiri, Mariko Suzuki, Tadashi Sakai, Shintaro Sato1, Mizuhisa Nihei1, and Yuji Awano1, ―High-Quality Carbon Nanotube Growth at Low Temperature by Pulse-Excited Remote Plasma Chemical Vapor Deposition‖, Applied Physics Express 1, (2008) , DOI. 034004.
[34] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, ―Fully sealed, high-brightness carbon-nanotube field-emission display‖ ,Applied Physics Letters 75, (1999) , pp. 3129.
[35] G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, O. Zhou, ―Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field- emission cathode‖ ,Applied Physics Letters 81, (2002), pp. 355.
[36] W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien, Binh, O. Groening, ―Carbon nanotubes as field emission sources‖, Journal of Materials Chemistry 14, (2004).
[37] http://www.enigmatic consulting.com/semiconductor_processing/CVD_Fun
Damentals/reactors/Bubbler_simple_model.html
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2011-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明