博碩士論文 983203032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.226.222.12
姓名 林聖育(Sheng-yu Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磁場輔助微電化學鑽孔加工特性之研究
(An Investigation of Magnetic Field Assisted Electrochemical Micro Drilling)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 微結構電化學加工底部R角之改善策略分析與實做研究★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響
★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響
★ 添加石墨粉末之快速穿孔放電加工特性研究★ 派熱司玻璃材料之電化學線切割放電加工特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用磁場輔助微電化學鑽孔,進行一系列加工特性之研究,內容主要可分為兩大部分:
第一部分研究加入磁場對電化學加工造成的效益。實驗結果顯示:電場中加入磁場會產生勞侖茲力,可影響帶電離子的運動,因此可以促進電解液更新,提升加工效率與精度。如欲擁有最大的加工能力,須將磁場以90°放置,因此時磁場方向與電場方向垂直,方能產生最大的勞侖茲力。運用磁場輔助電化學加工,在不旋轉電極、不施予沖流的加工條件下,可得到直徑最小為407 μm之微孔。但由於本研究使用的電極側邊並未絕緣,會產生較大的雜散電流腐蝕區域,因此下部份將就縮小雜散電流影響區,提出新的加工方法並進行研究。
第二部分是向上加工之特性研究。以向上進給方式進行加工時,其概念類似混氣電解加工。藉由電化學反應生成的氣泡在工件表面累積形成保護層,將可有效減少雜散電流影響區面積,並同步減少擴孔量而提升加工精度。以向上加工進行微電化學鑽孔時,能有效改善雜散電流的腐蝕情況,其環帶寬度最小可降低至106 μm。
摘要(英) The Study discusses the machining properties of magnetic field assisted micro electro-chemical drilling. It includes two major parts. First, the advantages of magnetic field assisted method are confirmed. The results reveal that the Lorentz force is helpful to renew the electrolyte to promote the machining efficiency and accuracy. When the magnet field direction is set perpendicular to the electrical field, the maximal Lorentz force is induced to increasing machining efficiency observably. With magnetic assist, the minimal micro hole with ψ407 μm is processed, even though the tool electrode doesn’t rotate between the working time. Furthermore, when the electrode doesn’t rotate, the straying current corrosion area occurred around the entrance edge will expand. To overcome this problem, a new upward feed machining method is presented.
Second, the machining properties of upward feed mode are investigated. The conception of upward feed mode is similar to gas mixed electrochemical machining. Because the reaction bubbles assemble on the workpiece surface like a protection layer, the straying current corrosion area and the hole-enlargement are reduced, and the machining accuracy is increased. In the upward mode, the straying current corrosion is improved effectively, and the annulus width is reduced to minimal 106 μm.
關鍵字(中) ★ 雜散電流影響區
★ 向上加工
★ 勞侖茲力
★ 磁場
★ 微電化學鑽孔
關鍵字(英) ★ Electrochemical micro drilling (ECMD)
★ Upward feed mode
★ Straying current corrosion area
★ Lorentz force
★ Magnetic field
論文目次 摘 要 i
Abstract ii
謝 誌 iii
目錄 vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 文獻回顧 5
1-4 研究架構 9
第二章 實驗基礎原理 10
2-1 電化學加工的基礎理論[5] 10
2-1-1 電化學反應機制 10
2-1-2 法拉第定律(Faraday’s Law) 12
2-1-3 歐姆定律(Ohm’s law) 13
2-1-4 電極電位-金屬與溶液界面雙電層理論 14
2-1-5 陽極極化曲線及其特徵 15
2-2 磁場理論 17
2-2-1 右手開掌定則 17
2-2-2 勞倫茲力(Lorentz´s force)[42-43] 18
2-3氣泡影響電化學加工理論[44-46] 20
2-3-1空隙分數(Void Fraction) 20
2-3-2電解液導電度(Conductivity) 20
第三章 實驗設備與材料 21
3-1 基礎實驗相關設備 21
3-2 實驗材料 30
第四章 微電化學鑽孔加工特性之研究 33
4-1 實驗簡介 33
4-2 實驗設備 33
4-3 實驗流程與方法 35
4-4 結果與討論 38
4-4-1 工作電壓對微孔之影響 38
4-4-2磁場設置角度對微孔之影響 44
4-4-3 進給速率對微孔之影響 52
4-4-4 脈衝時間對微孔之影響 54
4-5 結論 58
第五章 磁場輔助微電化學向上加工特性之研究 59
5-1 實驗簡介 59
5-2 實驗設備 60
5-3 實驗流程與方法 62
5-4 結果與討論 65
5-4-1 工作電壓對向上加工微孔之影響 65
5-4-2磁場設置角度對向上加工微孔之影響 68
5-4-3 進給速率對微孔之影響 71
5-4-4 脈衝時間對微孔之影響 72
5-5 結論 74
第六章 總結論 75
參考文獻 77
參考文獻 [1] J. F. Wilson, (1st), Practice and Theory of Electrochemical Machining, Wiley-interscience, pp.4-7, 1971.
[2] B. Bhattacharyya, M. Malapati, J. Munda, “Experimental study on electrochemical micromachining”, Journal of Materials Processing Technology, Vol.169, pp.485-492, 2005.
[3] B. H. Kim, S. H. Ryu, D. K. Choi, C. N. Chu, “Micro electrochemical milling”, J. Micromech. Microeng., Vol.15, pp.124–129, 2005.
[4] J. C. Hung, B. H. Yan, H. S. Liu, H. M. Chow, “Micro-hole machining using micro-EDM combined with electropolishing”, J. Micromech. Microeng., Vol.16, pp.1480–1486, 2006.
[5] 朱樹敏,電化學加工技術,化學工業出版社,2006。
[6] 胡錦芳,同軸噴吸法於微電解加工之研究,國立雲林科技大學機械工程系,碩士論文,2007
[7] K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu1, R. Resnick, A. DeSilva, “Micro and Nano Machining by Electro- Physical and Chemical Processes”, CIRP Annals - Manufacturing Technology, Vol.55, pp.643-666, 2006.
[8] R. Schuster, V. Kirchner, P. Allongue, G. Ertl, “Electrochemical micromachining”, Science, Vol.289, pp.98-101, 2000.
[9] J. Kozak , Kamlakar P.Rajurkar, Y. Makkar, “Selected problems of micro-electrochemical machining”, Journal of Materials Processing Technology, Vol.149, pp.426-431, 2004.
[10] S.H. Ahn, S.H. Ryu, D.K. Choi, C.N. Chu, “Electrochemical micro drilling using ultra short pulses”, Precision Engineering, Vol.28, pp.129-134, 2004.
[11] T. Kurita, K. Chikamori, S. Kubota, M. Hattori, “A study of three-dimensional shape machining with an ECMM system”, International Journal of Machine Tools & Manufacture, Vol.46, pp.1311-1318, 2006.
[12] K. Chikamori, “Possibilities of electrochemical micromachining”, International Journal of the Japan Society for Precision Engineering, Vol.32, pp.37-38, 1998.
[13] Hattori, “Electrochemical machining under orbital motion conditions”, Journal of Materials Processing Technology, Vol.109, pp.339-346, 2001.
[14] 崔海平,電化學結合電泳精密拋光不銹鋼基材加工研究,國立中央大學機械工程系,博士論文,2008。
[15] 尤俊欽,結合電化學與電泳沉積之微孔複合加工研究,國立中央大學機械工程系,碩士論文,2008。
[16] 楊曜光,磁場輔助微電化學銑削加工特性之研究,國立中央大學機械工程系,碩士論文,2009。
[17] H. P. Tsui, J. C. Hung, J. C. You, B. H. Yan, “Improvement of Electrochemical micro drilling accuracy using helical tool”, International Journal of Machine & Manufacture processes, Vol.5, pp.499-505, 2008.
[18] J. Fang, Z. Jin, et al., “ECM polishing research of assistant magneticfield”, Chin Surf. Eng. 15 (3), Vol.32, pp.24-26, 2002.
[19] B. H. Yan, G. W. Chang, T. J. Cheng, R. T. Hsu, “Electrolytic magnetic abrasive finishing”, International Journal of Machine & Manufacture processes, Vol.43, pp.1355-1366, 2003.
[20] Z. Fan, T. Wang, L. Zhong, “The mechanism of improving machining accuracy of ECM by magnetic field”, Journal of Materials Processing Technology, Vol.149, pp.409-413, 2004.
[21] B. Bhattacharyya, J. Munda, “Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tools & Manufacture, Vol.43, pp.1301-1310, 2003.
[22] B. Bhattacharyya, J. Munda, M. Malapati, “Advancement in electrochemical micro-machining”, International Journal of Machine Tools & Manufacture, Vol.44, pp.1577-1589, 2004.
[23] T. Kurita, M. Hattori, “Development of new-concept desk top size machine tool”, International Journal of Machine Tools & Manufacture, Vol.45, pp.959-965, 2005.
[24] B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi, C. N. Chu, “Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid”, CIRP Annals - Manufacturing Technology, Vol.54, pp.191-194, 2005.
[25] M. Sen, H.S. Shan, “A review of electrochemical macro- to micro-hole drilling processes”, International Journal of Machine Tools & Manufacture, Vol.45, pp.137-152, 2005.
[26] X. Lu, Y. Leng, “Electrochemical micromachining of titanium surfaces for biomedical applications”, Journal of Materials Processing Technology, Vol.169, pp.173-178, 2005.
[27] B. J. Park, B. H. Kim, C. N. Chu, “The Effect of Tool Electrode Size on Characteristics of Micro Electrochemical Machining”, CIRP Annals - Manufacturing Technology, Vol.55, pp.197-200, 2006.
[28] B. Bhattacharyya, M. Malapati, J. Munda, A. Sarkar, “Influence of tool vibration on machining performance in electrochemical micro-machining of copper”, International Journal of Machine Tools & Manufacture, Vol.47, pp.335-342, 2007.
[29] J. Munda, M. Malapati, B. Bhattacharyya, “Control of micro-spark and stray-current effect during EMM process”, Journal of Materials Processing Technology, Vol.194, pp.151-158, 2007.
[30] W. Natsu, T. Ikeda, M. Kunieda, “Generating complicated surface with electrolyte jet machining”, Precision Engineering, Vol.31, pp.33-39, 2007.
[31] M. S. Park, C. N. Chu, “Micro-electrochemical machining using multiple tool electrodes”, Journal of Micromechanics And Microengineering, Vol.17, pp.1451-1457, 2007.
[32] L. Staemmler, K. Hofmann, H. Kuck, “Hybrid tooling by a combination of high speed cutting and electrochemical milling with ultrashort voltage pulses”, Microsyst Technol, Vol.14, pp.249-254, 2008.
[33] Tsuneo Kurita, Chiaki Endo, Yasuhiro Matsui, et al., “Mechanical/electrochemical complex machining method for efficient, accurate, and environmentally benign process”, International Journal of Machine Tools & Manufacture, Vol.48, pp.1599-1604, 2008.
[34] Hong Shik Shin, Bo Hyun Kim, Chong Nam Chu, “Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses”, Journal of Micromechanics And Microengineering, Vol.18, 2008.
[35] Chan Hee Jo, Bo Hyun Kim, Chong Nam Chu, “Micro electrochemical machining for complex internal micro features”, CIRP Annals - Manufacturing Technology, Vol.58, pp.181-184, 2009.
[36] Insoon Yang, Min Soo Park, Chong Nam Chu, “Micro ECM with ultrasonic vibrations using a semi-cylindrical tool”, International Journal of Precision Engineering and Manufacturing, Vol.10, pp.5-10, 2009.
[37] S. Ali, S. Hinduja, J. Atkinson, M. Pandya, “Shaped tube electrochemical drilling of good quality holes”, CIRP Annals - Manufacturing Technology, Vol.58, pp.185-188, 2009.
[38] Shi Hyoung Ryu, “Micro fabrication by electrochemical process in citric acid electrolyte”, Journal of Materials Processing Technology, Vol.209, pp.2831-2837, 2009.
[39] Joseph J. Maurer, Jonathan J. Mallett, John L. Hudson, et al., “Electrochemical micromachining of Hastelloy B-2 with ultrashort voltage pulses”, Electrochimica Acta, Vol.55, pp.952-958, 2010.
[40] Eun-Sang Lee, Tae-Hee Shin, Baek-Kyoum Kim, Seung-Yub Baek, “Investigation of short pulse electrochemical machining for groove process on Ni-Ti shape memory alloy”, International Journal of Precision Engineering and Manufacturing, Vol.11, pp.113-118, 2010.
[41] Xinzhou Ma, Andreas B?n, Rolf Schuster, “Electrochemical machining of gold microstructures in LiCl/Dimethyl Sulfoxide”, ChemPhysChem, Vol.11, pp.616-621, 2010.
[42] 王薔、李國定、龔克,電磁場理論基礎,五南,2003。
[43] 陳抗生,電磁場與電磁波,新文京開發,2006
[44] J. F. Thorpe, R. D. Zerkle, “Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical Machining”, Electrochemical Society Princeton pp. 1-39 , 1971.
[45] 廖哲範,脈衝微電化學之加工應用與評估,國立中央大學機械工程系,碩士論文,2005。
[46] 紀朝傑,電化學矽加工之研究與分析,國立中央大學機械工程系,碩士論文,2008。
指導教授 顏炳華(Biing-hwa Yan) 審核日期 2011-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明