博碩士論文 983203058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.235.191.73
姓名 張軒維(Hsuan-wei Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 加壓型固態氧化物燃料電池性能與阻抗之定量量測與分析
(Quantitative Measurements of Cell Performance and Electrochemical Impedance Spectra for Pressurized SOFC)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文實做一套高壓雙腔室固態氧化物燃料電池(solid oxide fuel cells, SOFC)之性能測試平台,並針對兩組除了流場板設計不同,其他組件與操作條件完全一樣的單電池堆,進行電池性能與電化學阻抗頻譜(electrochemical impedance spectra, EIS)的定量量測。測試平台之關鍵設備為一套雙腔室壓力容器,其內腔室為高壓可程式控制高溫爐,外腔室為加壓容器。單電池堆是由陽極支撐電池片、crofer-22-APU框架、集電層以及一對肋條流道之流場板層層堆疊而成。單電池堆組裝完成後,會以陶瓷基座包覆保護,並置入測試平台之內腔室,故可進行一系列的高溫高壓性能測試。為了能讓單電池堆安全且穩定地在加壓條件下操作,本研究亦建立一套標準的實驗流程。實驗結果顯示,增加SOFC操作壓力有助於提升電池性能,但壓力效應與電池性能的關係為非線性。當操作壓力(P)由1 atm增加至3 atm,功率密度約增加22%,但當P由1 atm增加至5 atm,功率密度則增加30%。此結果與EIS所量測的結果吻合,當P由1 atm增加至3 atm,電池極化阻抗可被明顯的抑制,但當P持續增加至5 atm,則其阻抗頻譜幾無變化。此外,本研究亦發現,在常壓條件下,單電池堆若採用本團隊過去所提出的加設導流條之優化流場板設計,其操作於0.6 V之功率密度可比未加導流條設計約高13%。當操作壓力增加至5 atm,兩者功率密度之差異則增加至16%,顯示在高壓條件下,流場均勻度效應仍是影響電池性能的重要因素。本論文所獲致之結果應有助於國內開發SOFC與氣渦輪機結合之複合式發電系統。
摘要(英) This thesis presents the implementation of a high-pressure double-chamber solid oxide fuel cell (SOFC) testing platform for quantitatively measuring cell performance and electrochemical impedance spectra (EIS) of two sets of nearly identical single-cell stacks except using different flow distributors under pressurized conditions. The platform includes a high-pressure program-controlled tubular furnace, the inner chamber, which is resided in a relatively large pressurized chamber (the outer chamber). So the single-cell stack embedded in a ceramic housing and assembled by an anode-supported positive electrode-electrolyte-negative electrode, a crofer 22-APU supporting frame and two current collectors which are sandwiched by a pair of rib-channel flow distributors for both anode and cathode can be measured inside the inner chamber at high temperature and elevated pressure conditions. A standard procedure is also developed for the safety and stable operation of the single-cell stack under atmospheric and pressurized conditions. Experimental results show that the cell performance increases with increasing pressure (P) but the relationship between cell performance and P is not linear. There is an increase in performance of 22% from 1 to 3 atm and 30% from 1 to 5 atm. This is in good agreement with the EIS data which reveals that the polarization impedance is significantly decreased from 1 to 3 atm and then nearly keeps the same when P is further increased from 3 to 5 atm. Furthermore, it is found that by using small guide vanes around the feed header of commonly-used rib-channel flow distributors to improve effectively the degree of flow uniformity, the power density of the single-cell stack can be increased as compared to that without using guide vanes under exactly the same experimental conditions, and such increase about 13% at 1 atm can be further increased up to 16% as P increases to 5 atm. These results should be useful to provide the basic knowledge for the future development of the high-efficiency SOFC and gas turbine integrating power generation technology
關鍵字(中) ★ 加壓型固態氧化物燃料電池
★ 流場均勻度
★ 功率密度
★ 阻抗頻譜
關鍵字(英) ★ Solid oxide fuel cells
★  rib-channel interconnect
論文目次 目錄
摘要..... I
Abstract II
誌謝.................. III
符號說明 VIII
第一章 前言 1
1.1 研究動機 2
1.2 問題所在 4
1.3 解決方法 5
1.4 論文綱要 6
第二章 文獻回顧 8
2.1 固態氧化物燃料電池 8
2.2 加壓型SOFC之實驗與數值研究 10
2.3 流場均勻度效應對電池性能之影響 14
2.4 SOFC之電化學阻抗頻譜分析 17
第三章 實驗設備與量測方法 24
3.1 高壓單電池堆性能測試平台 24
3.2 實驗流程與量測操作參數設定 27
第四章 結果與討論 39
4.1 加壓效應對電池性能之影響 39
4.1.1 開迴路電壓 39
4.1.2 面積比電阻 41
4.1.3 功率密度 43
4.2加壓效應對電池阻抗頻譜之影響 45
4.3流場均勻度對電池性能之影響 46
第五章 結論與未來工作 55
5.1 結論 55
5.2 未來工作 56
參考文獻 57
參考文獻 [1] 經濟部能源局,2010年能源產業技術白皮書,台北市,2010。
[2] Stocker, T., Dahe, Q., Plattner, G.K., Tignor, M., Allen, S., Midgley, P., IPCC workshop on sea level rise and ice sheet instabilities, Workshop Report, Kuala Lumpur, Malaysia, 21-24 June 2010.
[3] Gregor, H., Fuel cell technology hand book, CRC Press, Germany, 2003.
[4] Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta, Vol. 45, pp. 2423-2435, 2000.
[5] Farooque, M., Maru, H.C., Carbonate fuel cells: milliwatts to megawatts, J. Power Sources, Vol. 160, pp. 827-834, 2006.
[6] Magraso, A., Fontaine, M.L., Larring, Y., Bredesen, R., Syvertsen, G.E., Lein, H.L., Grande, T., Huse, M., Strandbakke, R., Haugsrud, R., Norby, T., Development of proton conducting SOFCs based on LaNbO4 electrolyte - status in Norway, Fuel Cells, Vol. 11, No. 1, pp. 17-25, 2011.
[7] Park, S., Kim, T.S., Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell-gas turbine systems, J. Power Sources, Vol. 163, pp. 490-499, 2006.
[8] Zhou, L., Cheng, M., Yi, B., Dong, Y., Cong, Y., Yang, W., Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions, Electrochi. Acta, Vol. 53, pp. 5195-5198, 2008.
[9] Seidler, S., Henke, M., Kallo, J., Bessler, W.G., Maier, U., Friedrich, K.A., Pressurized solid oxide fuel cells: experimental studies and modeling, J. Power Sources, Vol. 196, pp. 7195-7202, 2010.
[10] Jensen, S.H., Sun, X., Ebbesen, S.D., Knibbe, R., Mogensen, M., Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells, Int. J. Hydro. Energy, Vol., 35, pp. 9544-9549, 2010.
[11] 顏正和,平板式固態氧化物燃料電池雙極板之流道設計與流場觀測,碩士論文,國立中央大學,2004。
[12] 簡奇偉,平板式固態氧化物燃料電池氣態多孔管道之速度量測,碩士論文,國立中央大學,2005。
[13] 簡暐珉,平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析,碩士論文,國立中央大學,2007。
[14] 蔡文哲,實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度,碩士論文,國立中央大學,2009。
[15] Huang, C.M., Optimizations of flow distributors and anodic microstructures for planar SOFC, Ph.D. Thesis, National Central University, Taiwan, 2009.
[16] Shy, S.S., Huang, C.M., Li, H.H., Lee, C.H., The impact of flow distributors on the performance of solid oxide fuel cell - part II: electrochemical impedance measurements, J. Power Sources, Vol. 196, pp. 7555-7563, 2011.
[17] Huang, C.M., Shy, S.S., H.H., Lee, C.H., The impact of flow distributors on the performance of solid oxide fuel cell, J. Power Sources, Vol. 195, pp. 6280-6286, 2010.
[18] Huang, C.M., Shy, S.S., Lee, C.H., On flow uniformity in various interconnects and its influence to cell performance of planar SOFC, J. Power Sources, Vol. 183, pp. 205-213, 2008.
[19] 黃士峻,平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應,碩士論文,國立中央大學,2008。
[20] 李信宏,棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響,碩士論文,國立中央大學,2009。
[21] Larminie, J., Dicks, A., Fuel cell systems explained, 2nd Ed., John Wiley & Sons Ltd., England, 2005.
[22] Song, C., Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century, Catal. Today, Vol. 77, pp. 17-49, 2002.
[23] CRC Handbook of chemistry and physics, 72st Ed., Lide, D.R., Ed., CRC Press: Boca Raton, FL., 1991.
[24] Hamann, C.H., Hamnett, A., Vielstich, W., Electrochemistry, J. Wiley & Sons, New York, 1998.
[25] Vielstich, W., Lamm, A., Gasteiger, H.A., Handbook of Fuel Cells: Fundamentals Technology and Applications, John Wiely & Sons, Ltd, Chichester, England, 2003.
[26] National Museum of American History, http://fuelcells.si.edu/so/sofcmain.htm
[27] Forschungszentrum Julich, FZJ, http://www.fz-juelich.de/portal
[28] Singhal, S.C., Kendall, K., High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Application, Elsevier, Kidlington, 2003.
[29] Yang, W.J., Park, S.K., Kim, T.S., Kim, J.H., Sohn, J.L., Ro, S.T., Design performance analysis of pressurized solid oxide fuel cell/gas turbine hybrid systems considering temperature constrains, J. Power Sources, Vol. 160, pp. 462-472, 2006.
[30] Singhal, S.C., Advances in solid oxide fuel cell technology, Solid State Ionics, Vol. 135, pp. 305-313, 2000.
[31] Virkar, A.V., Fung, K.Z., Singhal, S.C., The effect of pressure on solid oxide fuel cell performance, Proceedings of the Third International Symposium on Ionic and Mixed Conducting Ceramics, 1997.
[32] Henke, M., Kallo, J., Friedrich, K.A., Bessler, W.G., Influence of pressurization on SOFC performance and durability: a theoretical study, Fuel Cells, in press (doi:10.1002/fuce.201000098).
[33] Recknagle, K.P., Ryan, E.M., Koeppel, B.J., Mahoney, L.A., Khaleel, M.A., Modeling of electrochemistry and steam-methane reforming performance for simulating pressurized solid oxide fuel cell stacks, J. Power Sources, Vol. 195, pp. 6637-6644, 2010.
[34] Ni, M., Leung, M.K.H., Leung, D.Y.C., Parametric study of solid oxide fuel cell performance, Energy Conv. Manag., Vol. 48, pp. 1525-1535, 2007.
[35] Patcharavorachot, Y., Arpornwichanop, A., Chuachuensuk, A., Electrochemical study of a planar solid oxide fuel cell: role of support structures, J. Power Sources, Vol. 177, pp. 254-261, 2008.
[36] Bo, C., Yuan, C. Zhao, X., Wu, C.B., Li, M.Q., Parametric analysis of solid oxide fuel cell, Clean Techn. Environ. Policy, Vol. 11, pp. 391-399, 2009.
[37] Kikuchi, R., Yano, T., Takeguchi, T., Eguchi, K., Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions, Solid State Ionics, Vol. 174, pp. 111-117, 2004.
[38] Thomsen, E.C., Coffey, G.W., Pederson, L.R., Marina, O.A., Performance of lanthanum strontium manganite electrodes at high pressure, J. Power Sources, Vol. 191, pp. 217-244, 2009.
[39] Honeywell, Solid oxide fuel cell hybrid system for distributed power generation, Quarterly Technical Progress Report, DE-FC26-01NT40779, 2002.
[40] Lim, T.H., Song, R.H., Shin, D.R., Yang, J.I., Jung, H., Vinke, I.C., Yang, S.S., Operating characteristics of a 5 kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system, Int. J. Hydro. Energy, Vol. 33, pp. 1076-1083, 2008.
[41] Carrette, L., Friedrich, K.A., Stimming, U., 2001 Fuel cells – fundamentals and applications, Fuel Cells, Vol. 1, pp. 5-37, 2001.
[42] Yakabe, H., Ogiwara, T., Hishinuma, M., Yasuda, I., 3-D model calculation for planar SOFC, J. Power Sources, Vol. 102, pp. 144-154, 2001.
[43] de Haart, L.G.J., Vinke, I.C., Janke, A., Ringel, H., Tietz, F., in: Yokpawa, H., and Singhal, S.C. (Eds.), Solid Oxide Fuel Cells (SOFC VII), Electrochem. Soc. Proc. The Electrochemical Society, Pennington, New Jersey, PV2001-16:111, 2001.
[44] Hwang, J.J., Chen, C.K., Lai, D.Y., Detailed characteristic comparison between planar and MOLB-type SOFCs, J. Power Sources, Vol. 143, pp. 75–83, 2005.
[45] Schmidt, M., The Hexis Project : Decentralized electricity generation with waste heat utilization in the household, Fuel Cells Bulletin, Vol. 1, pp. 9-11, 1998.
[46] Gardner, F.J., Day, M.J., Brandon, N.P., Pashley, M.N., Cassidy, M., SOFC technology development at Rolls-Royce, J. Power Sources, Vol. 86, pp. 122–129, 2000.
[47] Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., Yasuda, I., Evaluation and modeling of performance of anode-supported solid oxide fuel cell, J. Power Sources, Vol. 86, pp. 423-431, 2000.
[48] Ackmann, T., de Haart, L.G.J., Lehnert, W., Stolten, D., Modeling of mass and heat transport in planar substrate type SOFCs, J. Electrochem. Soc., Vol. 150, pp. A783-A789, 2003.
[49] Yuan, J., Rokni, M., Sunden, B., Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells, Int. J. Heat Mass Tran., Vol. 46, pp.809-821, 2003.
[50] Lin, Y., Beale, S. Performance predictions in solid oxide fuel cells, 3rd Int. conference on CFD in the Minerals and Process Industries, Melbourne, 10-12 December, 2003.
[51] Larrain, D., Van herle, J., Marechal, F., Favrat, D., Generalized model of planar SOFC repeat element for design optimization, J. Power Sources, Vol. 131, pp. 304-312, 2004.
[52] Beale, S.B., Calculation procedure for mass transfer in fuel cells, J. Power Sources, Vol. 128, pp. 185-192, 2004.
[53] Stiller, C., Thorud, B., Seljebo, S., Mathisen, O., Karoliussen, H., Bolland, O., Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells, J. Power Sources, Vol. 141, pp. 227-240, 2005.
[54] Ramakrishna, P.A., Yang, S., Sohn, C.H., Innovative design to improve the power density of a solid oxide fuel cell, J. Power Sources, Vol. 158, pp. 378-384, 2006.
[55] Recknagle, K.P., Williford, R.E., Chick, L.A., Rector, D.R., Khaleel, M.A., Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks, J. Power Sources, Vol. 113, pp. 109-114, 2003.
[56] Chyou, Y.P., Chung, T.D., Chan, J.S., Shie, R.F., Integrated thermal engineering analyses with heat transfer at periphery of planar solid oxide fuel cell, J. Power Sources, Vol. 139, pp. 126-140, 2005.
[57] Iwata, M., Hikosaka, T., Morita, M., Iwanari, T., Ito, K., Onda, K., Esaki, Y., Sakaki, Y., Nagata, S., Performance analysis of planar-type unit SOFC considering current and temperature distributions, Solid State Ion., Vol. 132, pp. 297-308, 2000.
[58] Lin, Z., Stevenson, J.W., Khaleel, M.A., The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs, J. Power Sources, Vol. 117, pp. 92-97, 2003.
[59] Cha, S.W., O’Hayre, R., Prinz, F.B., The influence of size scale on the performance of fuel cells, Solid State Ion., Vol. 175, pp. 789-795, 2004.
[60] Autissier, N., Larrain, D., Van herle, J., Favrat, D. CFD simulation tool for solid oxide fuel cells, J. Power Sources, Vol. 131, pp. 313-319, 2004.
[61] Huang, Q.A., Hui, R., Wang, B., Zhang, J., A review of AC impedance modeling and validation in SOFC diagnosis, Electrochem. Acta, Vol. 52, pp. 8144-8164, 2007.
[62] Barsoukov, E., Macdonald, J.R., Impedance spectroscopy theory, experiment, and applications, 2nd Ed. John Wiley & Sons, Inc., New Jersey, 2005.
[63] Gazzarri, J.I., Kesler, O., Electrochemical AC impedance model of solid oxide fuel cell and its application to diagnosis of multiple degradation modes, J. Power Sources, Vol. 167, pp. 100-110, 2007.
[64] Kim, C.H., Pyun, S.L., Kim, J.H., An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations, Electrochem. Acta, Vol. 48, pp. 3455-3463, 2003.
[65] Schiller, C.A., Strunz, W., The evaluation of experimental dielectric data of barrier coatings by means of different models, Electrochem. Acta, Vol. 46, pp. 3619-3625, 2001.
[66] Jorcin, J.B., Orazem, M.E., Pèbère, N., Tribollet, B., CPE analysis by local electrochemical impedance spectroscopy, Electrochem. Acta, Vol. 51, pp. 1473-1479, 2006.
[67] Leonide, A., Sonn, V., Weber, A., Ivers-Tiffèe, E., Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, J. Electrochem. Soc., Vol. 155, pp. B36-B41, 2008.
[68] Zhao, F., Virkar, A.V., Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, J. Power Sources, Vol. 141, pp. 79-95, 2005.
[69] Bio-Logic, SP-150 installation and configuration manual, 2009.
[70] G.D. Marco, A. Pilenga, M. Honselaar, T. Malkow, G. Tsotridis, A. Janssen, B. Rietveld, I. Vinke, J. Kiviaho, “SOFC single cell performance and endurance test modules,” JRC Scientific and Technical Report, TM SOFC 01-04 LD/ 05-08 HD, Joint Research Centre Scientific and Technical Reports, 2010.
[71] Barfod, R., Mogensen, M., Klemensø, T., Hagen, A., Liu, Y.L. and Hendriksen, P.V., Detialed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc., Vol. 154, pp. B371-B378, 2007.
[72] EG & G Services, “Fuel Cell Handbook,” U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, W.V., 2004.
[73] Steinberger-Wilckens, R., Blum, L., Buchkremer, H., Overview of the development of solid oxide fuel cells at Forschungszentrum Juelich, Int. J. Appl. Ceram. Tech., Vol. 3, pp. 470-476, 2006.
[74] Perera, C.K., The effect of mercury on performance of Ni/YSZ anode in a planar solid oxide fuel cell, Ph.D. Thesis, the Russ College of Engineering and Technology of Ohio University, 2010.
[75] Mogensen, M., Larsen, P.H., Hendriksen, P.V., Solid oxide fuel cell testing: results and interpretation, Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Honolulu, Hawaii, 1999.
[76] Kim, J., Virkar, A., Fung, K., Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells, J. Electrochem. Soc., Vol. 146, pp. 69-78, 1999.
[77] Gemmen, R.S., Williams, M.C., Gerdes, K., Degradation measurement and analysis for cells and stacks, J. Power Sources, Vol. 184, pp. 251-259, 2008.
指導教授 施聖洋(Shenqyang Steven Shy) 審核日期 2011-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明