博碩士論文 983203061 詳細資訊


姓名 高嘉文(Chia-wen Kao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 相變化材料於球形容器之儲熱實驗與分析
(Experimental Investigation of Heat Storage for Phase-Change-Material in a Spherical Container)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文利用熱阻觀念,做簡單的物理分析,推導出ㄧ維球形相變化儲熱
材料熱傳方程式,並配合實驗驗證方程式的可靠度。在熱阻分析時,
假令固態相變化材料利用潛熱所吸收之熱量,等於外界工作流體所帶
進來的熱,並考慮「工作流體─球囊外壁」、「球囊外壁─球囊內壁」
以及「球囊內壁─液態相變化材料」三種熱阻,並以串聯方式進行系
統分析。其中忽略球囊殼的熱容效應,且液態相變化材料傳熱方式分
成純熱傳導與考慮熱對流兩種。
由結果發現影響儲熱時間之參數有球囊設計、相變化材料性質參
數以及工作流體性質參數。經由參數分析發現,工作流體性質中,隨
著工作流體的Nu 增加,總儲熱時間就會下降。球囊設計參數中,藉
由增大球殼熱傳導係數來縮小球殼與液態相變材料熱傳導係數之比值,能夠縮短系統儲熱時間。
並且要預估總融化時間,可以藉由液態相變化材料熱阻考慮熱對
流方程式來估算。若要知道確切融化位置,當融化位置係數>0.37 時,
使用液態相變化材料熱阻只考慮熱傳導方程式;當融化位置係數
<0.37 時,使用液態相變化材料熱阻考慮熱對流方程式。
摘要(英) This study analyzes one-dimensional spherical phase change material
(PCM) heat transfer formula which derives from the concept of thermal
resistance. The viability of this formula is validated by experimental data.
In the analysis of thermal resistance, the heat which absorb by PCM is
assumed equal to the heat which transfer from the heat transfer fluid
(HTF). In the system, there are three types of thermal resistance in series
connection, including HTF to capsule outside surface, capsule outside
surface to inside surface, and capsule inside surface to PCM. Due to the
specific heat of capsule is very small, the sensible heat of capsule is
neglected. The heat transfer within liquid PCM is considered as two
different types – only conduction and only convection.
As the results, the parameters which affect the melting time include
size and thickness of capsule, and thermal physical properties of capsule,
PCM, and HTF. By the parameter analysis, the melting time is reduced as
the Nusselt number of HTF is increasing, and the thermal conductivity of
capsule is enhanced.
To predict the melting time, it has good agreement by using the heat
transfer formula with considering convection. To predict the melting
surface location, when the melting location coefficient is larger than 0.37,
using the heat transfer formula without considering convection has good
agreement. But when the melting location coefficient is smaller than 0.37,
using the heat transfer formula with considering convection has good
agreement.
關鍵字(中) ★ 相變化材料
★ 熱阻
★ 儲熱槽
★ 潛熱
★ 囊
關鍵字(英) ★ thermal storage tank
★ latent heat
★ capsule
★ phase change material
★ thermal resistance
論文目次 中文摘要…………………………………………………………….……i
英文摘要…………………………………………………………………ii
誌謝……………………………………………………………………iii
目錄……………………………………………………………………iv
表目錄………………………………………………………………vii
圖目錄…………………………………………………………………viii
第一章、研究背景與目的………………………………………………..1
1-1 前言………………………………..……………….3
1-2 研究動機………………………………..……………….3
1-3 低溫相變化儲熱系統之文獻回顧………..……………3
1-3-1 儲能介紹……………...……..…….………….………5
1-3-2 相變化儲能材料挑選…...…….……………….……..6
第二章、文獻回顧………………………………….…………………….9
2-1 相關文獻彙整…..………………..………………….........9
2-1-1 儲存囊內部分析相關文獻............................................9
2-1-2 實驗驗證與系統架設相關文獻…………………......12
2-2 研究主題...........................................................................13
第三章、研究方法…………….……………….………………………..16
3-1 球形熱阻分析問題..………………………………….16
3-1-1 液態相變化材料只考慮熱傳導公式推導……….17
3-1-2 液態相變化材料考慮熱對流公式推導………….19
3-2 ㄧ維相變化熱傳方程式可靠度實驗…………….…...24
3-2-1 實驗器材簡介……………………………………...24
3-2-2 靜置加熱下,玻璃球之融化實驗與過程觀察….….26
3-2-3 靜置加熱下,金屬球囊之融化………………………27
3-3 添加鰭片增加傳熱實驗……….……………...………28
3-4 大型儲熱槽系統之建立……………………….………28
3-5 時間偵測與溫度趨勢………………………………….31
3-5-1 溫度偵測點位置與融化時間之影響與關係………31
第四章、結果與討論………………………………………………… 34
4-1 ㄧ維相變化熱傳分析…………………………………34
4-1-1
Ksph比上Kliq對於融化時間的影響……….…………………34
4-1-2 water Nu 對於融化時間的影響……….………..............37
4-2 改變添加鰭片之數量縮短總融化時間..……………40
4-3 建立大型低溫儲熱槽實作……………………………42
4-3-1 幾何模型………………………………………...……42
4-3-2 金屬球擺放位置對總融化時間之影響……..………42
4-3-2-1 緊貼擺放之熱傳分析……………………………42
4-3-2-2 平均擺放之熱傳分析……………………………. 43
第五章、結論……………………………………………..……………..45
5-1 公式推導結論…………………………………………45
5-2 實驗研究結論…………………………………………46
第六章、未來工作………………………………………………………47
參考文獻………………………………...……………………...............48
參考文獻 1. htp://www.moeaboe.gov.tw/opengovinfo/Plan/all/WorkStatisticsAll.aspx
2. 2007 年能源科技研究發展白皮書,經濟部能源局,2007 年12 月。
3. Gliick, A., “Development and Testing of Advanced TES Materials for
Solar Thermal Central Receiver Plants,” Proceedings Solar World
Congress, Vol. 2, No.1, pp. 943-948, 1991.
4. Schossig, P., Henning, H. M., and Gschwander, S., “Micro-Encapsulated
Phase-Change Materials Integrated into Construction Materials,”
Journal of Solar Energy Engineering, Vol. 89, pp.297-306, 2005.
5. http://www1.eere.energy.gov/solar/csp_industry_projects.html#thermal
6. http://www1.eere.energy.gov/solar/thermal_storage.html
7. Sharma, A., Tyagi,V. V., Chen, C. R. and Buddhi, D. “Review on
Thermal Energy Storage with Phase Change Materials and
Applications,” Renewable and Sustainable Energy Reviews, pp, 318-345,
2007.
8. McDonald, T. W., Hwang, K. S., and Diciccio, R., “Thermosiphon Loop
Performance Characteristics: Part 1. Experimental Study,” Trans.
ASHRAE, Vol. 83, pp. 250-259, 1977.
9. Lorsch, H. G., “Thermal Energy Storage for Solar Heating” American
Society of Heating,Refrigeratimg and Air-Conditioning Engineering
Journal, Vol 17, pp.47-52,1975.
10. Loef, G. O. G., “Cost of House Heating with Solar System,” Solar
Energy, Vol 14, pp. 253-278, 1973.
11. Alva, L. H. S., Gonzalez, J. E., and Dukhan, N., “Initial Analysis of
PCM Integrated Solar Collectors,” Journal of Solar Energy Engineering,
4 9
Vol. 128, No. 2, pp.173-177, 2006.
12. Fatih, D. M., “Thermal Energy Storage and Phase Change Materials: An
Overview,” Energy Sources, Part B: Economics, Planning and Policy,
Vol. 1, No. 1, pp. 85-95, 2006.
13. Tamme, R., Tant, U., and Streuber, C., “Energy Storage Development
for Solar Thermal Process,” Solar Energy Materials and Solar Cells, Vol.
24, No. 1, pp. 386, 1991.
14. Notter, W., Lechner, T., and Grob, U., “Thermophysical Properties of
The Composite Ceramic-Salt System(SiO2/Na2SO4),”Thermochimica
Acta, Vol. 218, pp. 445-453, 1993.
15. Notter, W., and Hahne E., “Thermal Expansion Models for
Polycrystalline Salt-Ceramics,” Thermochimica Acta, Vol. 290, No. 1,
pp. 93-100, 1996.
16. Alexiades, V., and Solomon, A. D., Mathematical Modeling and
Freezing Processes, Hemisphere, Washington, DC, 1993.
17. Lane, G., Solar Heat Storage: Latent Heat Material, CRC Press, Boca
Raton, FL, United States, 2008.
18. Bedecarrats, J. P., Strub, F., Falcon, B., and Dumas, J.P., “Experimental
and Numerical Analysis of The Supercooling in a Phase Change Energy
Storage.” International Congress of Refrigeration, Vol. III a, Hague,
Netherlands; 20–25 August. pp. 46–53, 1995.
19. Ian, W., Eames, A., Kamel, T. and Adref, B., “Freezing and Melting of
Water in Spherical Enclosures of The Type Used in Thermal (Ice)
Storage Systems,” Applied Thermal Engineering, Vol.22, pp. 733–745,
2002.
5 0
20. Assis, E., “Numerical and Experimental Study of Melting in a Spherical
Shell,” Internation Journal of Heat and Mass Transfer ,Vol. 50, pp.
1790-1804, 2007.
21. Ismail, K. A. R. and Moraes, R. I. R., “A Numerical and Experimental
Investigation of Different Containers and PCM Options for Cold Storage
Modular Units for Domestic Applications,” Heat and Mass Transfer,
Vol.52, pp. 4195-4202, 2009.
22. Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C., and Schwarzer, K.
“Experimental Analysis and Numerical Modeling of Inward
Solidification on a Finned Vertical Tube for a Latent Heat Storage Unit.”
Soarl Energy; Vol.60, pp. 281-290, 1997.
23. Velraj, R., Seeniraj, R.V., “Heat Transfer and Parametric Studies of an
Internally Finned LHTS Via an Enthalpy Model,” Journal of Heat
Transfer , Vol.121, pp. 493, 1999.
24. Hafner, B., and Schwarzer, K., “Improvement of the Heat Transfer in a
Phase-Change-Materials Storage,” In Proceedings of the 4th Workshop of
IEA ECES IA Annex 10, Bendiktbeuern, Germany, 1999.
25. Kaygusuz, K., “The Viability of Thermal Energy Storage,” Energy
Sources, Vol. 21 Issue 8, pp. 745-755, 1999.
26. Konev, S. V., Wang, J. L., and Tu, C. J., ”Characteristics of a Heat
Exchanger Based on a Collector Heat Pipe,” Heat Recovery System &
CHP, Vol. 15, No. 5, pp 493-502, 1995.
27. Marshall, R., “A Generalised Steady State Collector Model Including
Pipe Losses, Heat Exchanger, and Pump Power,” Solar Energy, Vol. 66,
No. 6, pp. 469-477, 1999.
28. Cheng, K. C. and Lee, C. A., “Heat Transfer Characteristics of a
5 1
Closed-Loop Two-Phase Thermosiphon System for Solar Collector
Applications,” the 5th IHPC, Vol. 3, pp. 25-33, 1984.
29. Kaya, T. and Hoang, T. T., “Mathematical Modeling of Loop Heat Pipes
and Experimental Validation,” Journal of Thermaphysics and Heat
Transfer, Vol. 13, pp. 67-234, 1999.
30. Yun, S., “Design and Test Results of Multi-Evaporator Loop Heat Pipes”,
International Conference On Environmental Systems, July 1999, Denver,
CO, USA, pp. 1999-01-2051-pp. 1999-01-2052, 1999.
31. Nallusamy, N., Sampath, S., and Velraj, R., “Experimental Investigation
on a Combined Sensible and Latent Heat Storage System Integrated
with Constant/Varying (solar) Heat Sources,” Renewable Energy, Vol. 32,
Issue 7, pp. 1206-1227, 2007.
32. Nagano, K., “Experiments on Fin-Effects for Increasing Heat Transfer
Coefficients During Charging Heat and Heat Release Between PCMs
and Thermal Medium.” Arvika (Sweden): The IEA Annex 17 Workshop,
2004.
33. Kenisarin, M., and Mahkamov K., “Solar energy storage using phase
change material,” Renewable and Sustainable Energy Reviews, Vol. 11,
pp. 1913-1965, 2007.
34. Dhifaoui, B., Jabrallah, S. B., and Belghith, A., Corriou, J. P.,
“Experimental Study of the Dynamic Behavior of a Porous Medium
Submitted to a Wall Heat Flux in View of Thermal Energy Storage by
Sensible Heat” International Journal of Thermal Sciences, Vol 46, pp.
1056-1063, 2007.
35. Snaith, B., P. W. O’Callaghan, and S.D. Probert, Applied energy, Vol.16,
pp.175, 1984.
5 2
36. Madhusudana, C. V., and Fletcher L. S., AIAA J., Vol.24, pp.510, 1986.
37. Yovanovich, M. M., “Recent Development in Thermal Contact, Gap and
Joint Conductance Theories and Experiment,” in C. L. Tien, V. P. Carey,
and J. K. Ferrel, Eds., Heat Transfer-1986, Vol. 1, Hemisphere, New
York, pp. 35-45, 1986.
38. Weber, N., Powe, R. E., Bishop, E. H., and Scanlan, J, A.,“Heat Transfer
by Natural Convection between Vertically Eccentric Spheres,” Journal
of Heat Transfer, Vol. 95, pp. 47-52, 1973.
39. Churchill, S.W. “Free convection around immersed bodies. In:
Schlunder EU,editor. Heat exchanger design book.” New York:
Hemisphere Publishing, pp. 2.5.7, 1983.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2011-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡