博碩士論文 983203083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.188.20.56
姓名 張益綜(Yi-zong Zhang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究
(Zr-based and Zr-Cu based Glass-forming Films for Fatigue-property Improvements of 7075-T6 Aluminum Alloy)
相關論文
★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究
★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究★ 不同製程對鋯基非晶質合金破裂韌性影響之研究
★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究
★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究
★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究
★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討
★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究
★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響★ 鈦基非晶填料應用於Ti-6Al-4V合金硬焊之微結構及機械性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中將探討鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6高強度鋁合金疲勞性質提升之研究。在鋁合金試片上濺鍍一層厚度為200nm的(Zr53Cu30Ni9Al8)99.5Si0.5與(Zr42Cu42Al8Ag8)99.5Si0.5薄膜,及鋁合金試片在三種條件下分別進行疲勞測試,鋯基鍍膜與鋯銅基鍍膜的鋁合金疲勞壽命在250 MPa的應力下分別為5.0×106次與 >107次,相較於未鍍膜的鋁合金試片分別提升了21.7倍與44.5倍。另外在疲勞限應力上之表現,則分別提升了56.7 %與66.7 %。由上述結果可以得知金屬玻璃薄膜對鋁合金疲勞性質有顯著的提升功效。再者,表面粗糙度、薄膜在基板上的附著力、薄膜本身的機械強度與硬度以及壓縮殘留應力對疲勞性質的提升存在關鍵性的影響。經由SEM觀察發現非晶質鍍膜能有效的抑制offset及裂隙在基板張力面的形成。相較於鋯基鍍膜,鋯銅基鍍膜具有較佳的抗疲勞能力,在250 MPa的應力下,疲勞壽命約為鋯基鍍膜的2倍,此乃由於鋯銅基鍍膜的硬度、強度均較高且具較佳的塑性,所以對於疲勞性質之提升略優於鋯基鍍膜。在本論文中我們也藉由各項儀器的分析來了解超薄鍍膜的特性並建立金屬玻璃鍍膜提升疲勞性質的機制;希望進一步將金屬玻璃鍍膜推廣應用到航太、汽車工業、自行車等交通器械之疲勞性質的提升。
摘要(英) We proposed with the Zr-based and Zr-Cu based metallic glass thin film (MGTF) as promising coating for aluminum alloy fatigue property enhancement. According to the four-point-bending fatigue results, 7075-T6 aluminum alloy with a 200-nm-thick Zr-based MGTF improved its fatigue life cycle 22 times at a stress level of 250 MPa than the bare one. And the other fatigue life cycle of Zr-Cu based MGTF is further improved 44 times which ups to 107 cycles. The improvements of MGTF coating samples in fatigue limit were 235 MPa (56.7 % increase) and 250 MPa (66.7 % increase) for Zr-based and Zr-Cu based glass-forming film, respectively, and 150 MPa for uncoated sample. The films actually restrict the surface offsets and cracks propagating during the fatigue test. Zr-Cu based glass-forming film have better fatigue resistance than Zr-based MGTF, the fatigue life had improved by more than 2 times under a stress of 250 MPa, due to higher hardness and strength, better plasticity, thus it exhibits better improvement in fatigue property. A 50-nm-thick Titanium buffer layer between the film and the substrate was reported adhesion enhancement. The superior mechanical properties of MGTF, such as high strength and good bending ductility, coupled with good adhesion between the film and the substrate as well as the reduced surface roughness, and high compressive residual stress of the metallic film yield the fatigue property improvement of aluminum alloy. Thus demonstrating MGTF as promising coating materials for improving the fatigue properties of materials, and further applied to aerospace, automobile industry and bicycle manufacturing etc.
關鍵字(中) ★ 金屬玻璃薄膜
★ 真空濺鍍
★ 附著性
★ 四點彎曲
★ 疲勞性質
關鍵字(英) ★ MGTF
★ Vacuum Sputtering
★ Adhesion
★ Four-Point-Bending
★ Fatigue Property
論文目次 中文摘要......................................................................................................................................i
英文摘要.....................................................................................................................................ii
總目錄........................................................................................................................................iii
圖目錄........................................................................................................................................vi
表目錄.........................................................................................................................................x
第一章 前言.............................................................................................................................1
1-1 研究動機..........................................................................................................................1
1-2 研究目的..........................................................................................................................2
第二章 理論基礎.....................................................................................................................4
  2-1 塊狀非晶質合金........................................................................................................4
   2-1-1 非晶質合金概述.................................................................................................4
2-1-2 非晶質合金發展歷程..................................................................................................5
2-1-3 非晶質合金形成準則..................................................................................................8
   2-1-4 非晶質合金製備方式.........................................................................................9
  2-2 塊狀非晶質合金的特性..........................................................................................11
   2-2-1 機械性質...........................................................................................................11
   2-2-2 耐腐蝕性...........................................................................................................12
   2-2-3 磁性質...............................................................................................................13
   2-2-4 其他性質...........................................................................................................13
   2-2-5 非晶質合金之應用...........................................................................................14
  2-3 非晶質合金的變形機制..........................................................................................14
   2-3-1 剪切轉變區(Shear Transformation Zones, STZs)..............................................14
   2-3-2 剪切帶(Shear Bands).........................................................................................15
  2-4 非晶質薄膜(Metallic Glass Thin Film, MGTF).........................................................16
 2-4-1 附著性質...................................................................................................................17
   2-4-2 奈米壓痕薄膜硬度...........................................................................................17
  2-5 物理氣相沉積..........................................................................................................18
   2-5-1 直流磁控濺鍍...................................................................................................19
   2-5-2 薄膜沉積原理...................................................................................................20
  2-6 高強度鋁合金(7075-T6)..........................................................................................22
  2-7 四點彎曲疲勞..........................................................................................................22
   2-7-1 鍍層對疲勞性質的改善...................................................................................22
第三章 實驗步驟....................................................................................................................24
  3-1 靶材合金製備與試片前處理...................................................................................24
   3-1-1 靶材合金原料之配製........................................................................................24
   3-1-2 真空電弧熔煉(Arc-melting)...............................................................................25
   3-1-3 真空吸鑄製程(Drop-Casting).............................................................................25
   3-1-4 鋁合金試片製備與前處理................................................................................26
  3-2 金屬玻璃薄膜製備...................................................................................................26
   3-2-1 直流磁控濺鍍(DC Magnetron Sputtering).........................................................26
  3-3 機械性質分析...........................................................................................................27
   3-3-1 刮痕測試(Scratch Test)......................................................................................27
   3-3-2 奈米壓痕硬度量測(Nanoindentation Test)........................................................27
   3-3-3 疲勞測試(Fatigue Test)......................................................................................27
  3-4 微觀組織分析...........................................................................................................28
   3-4-1 X光繞射分析(XRD)..........................................................................................28
   3-4-2 原子力顯微鏡分析(AFM).................................................................................28
   3-4-3 掃描式電子顯微鏡(SEM)觀察與能譜元素分析(EDS)....................................29
   3-4-4 穿透式電子顯微鏡(TEM).................................................................................29
第四章 結果與討論................................................................................................................30
  4-1 成分分析...................................................................................................................30
   4-1-1 能量分散質譜儀(Energy dispersive spectrometry-EDS)....................................30
  4-2 晶體結構分析...........................................................................................................31
  4-3 薄膜刮痕附著力試驗...............................................................................................31
  4-4 原子力顯微鏡表面分析...........................................................................................31
  4-5 機械性質分析...........................................................................................................32
   4-5-1 奈米壓痕硬度量測............................................................................................32
   4-5-2 四點彎曲疲勞試驗............................................................................................35
  4-6 SEM破斷面與微組織分析........................................................................................35
  4-7 TEM觀察分析............................................................................................................35
第五章 結論.............................................................................................................................36
第六章 參考文獻.....................................................................................................................89
參考文獻 [1] F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y. F. Guan, J. P. Chu, P. D. Rack, “Fatigue-resistance enhancements by glass-forming metallic films”, Mater. Sci. Eng., A 468-470, p. 250, 2007.
[2] U. Essmann, U. Gösele and H. Mughrabi, “A model of extrusions and intrusions in fatigued metals I”, Philosophical Magazine, Vol. 44, p. 405, 1981.
[3] H. Kaneshiro, K. Katagiri, C. Makabe, T. Yafuso and H. Kobayashi, “Dislocation structures in the strain localized region in fatigued 70/30 brass and the interaction with grain boundary”, Metall. Trans., Vol. 21A, p. 667, 1990.
[4] W. Liu, M. Bayerlein, H. Mughrabi, A. Day and P. N. Quested, “Crystallographic features of intergranular crack initiation in fatigued copper polycrystals”, Acta Metall., Vol. 40, p. 1763, 1992.
[5] R. D. Conner, Y. Li, W. D. Nix, and W. L. Johnson, “Shear band spacing under bending of Zr-based metallic glass plates”, Acta Mater., Vol. 52, p. 2429, 2004.
[6] R. D. Conner, W. L. Johnson, “Shear bands and cracking of metallic glass plates in bending”, J. Appl. Phys., Vol. 94, p. 904, 2003.
[7] W. H. Jiang, G. J. Fan, H. Choo, P. K. Liaw,“Ductility of a Zr-based bulk-metallic glass with different specimen's geometries” , Mater. Lett., p. 3537, 2006.
[8] F. X. Liu, P. K. Liaw, G. Y. Wang, C. L. Chiang, D. A. Smith, P. D. Rack, J. P. Chu, R. A. Buchanan, “Specimen-geometry effects on mechanical behavior of metallic glasses”, Intermetallics, Vol. 14, p. 1014, 2006.
[9] F. X. Liu, C. L. Chiang, J. P. Chu, Y. F. Gao, and P. K. Liaw, “Effects of Glass-Forming Metallic Film on the Fatigue Behavior of C-2000 Ni-Based Alloy”, Mater. Res. Soc. Symp. Proc., Vol. 903E, p. 13.3, 2006.
[10] B. Lonyuk, I. Apachitei, J. Duszczyk, “The effect of oxide coatings on fatigue properties of 7475-T6 aluminium alloy”, Surface & Coating Technology, Vol. 201, pp. 8688-8694, 2007.
[11] W. Klement, R. H. Wilens and P. Duwes,“Thermophysical properties of bulk metallic glass-forming liquids”, Nature, Vol. 187, p. 869, 1960.
[12] A. Brenner, D. E. Couch and E. K. Williams,“Electrodeposition of alloys of phosphorus with nickel or cobalt”, J. Res. nat1. Bur. Stand, Vol. 44, p. 109, 1950.
[13] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠等著,材料電子顯微鏡學, p. 268,國科會精儀中心,1990 年。
[14] 戴道生、韓汝琪等編著,非晶態物理,高等學校教學用書,電子業出版社,1984 年。
[15] J. Kramer, “Produced the first amorphous metals through vapor deposition”, Annln Phys., Vol. 19, p. 37, 1934.
[16] A. Brenner, D. E. Couch and E. K. Williams, “Electrodeposition of alloys”, J. Res, natn. Bur. Stand, Vol.44, p.109, 1950.
[17] W. Klement, R. H. Wilens and P. Duwes,“Thermophysical properties of bulk metallic glass-forming liquids”, Nature, Vol. 187, p. 869, 1960.
[18] D. Turnbull, “Phase changes”, Solid State Phys., Vol. 3, p. 225, 1956.
[19] D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy systems”, J. Phys., Vol. 35, pp. 1-10, 1974.
[20] D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, J. Phy. Chem. Glasses, Vol. 7, p. 159, 1966.
[21] H. A. Davies, “The formation of metallic glass”, J. Phys. Chem. Glasses, Vol. 17, p. 159, 1976.
[22] H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, p. 1237, 1970.
[23] H. S. Chen, “Glassy metals”, Rep. Prog. Phys., Vol. 43, pp. 353-356, 1980.
[24] Liebermann H. and Graham C., “Production Of Amorphous Alloy Ribbons And Effects Of Apparatus Parameters On Ribbon Dimensions”, IEEE Transactions on Magnetics, Vol. 12, No. 6, pp. 921 – 923, 1976.
[25] 吳學陞著作,“新興材料-塊狀非晶質金屬材料”,工業材料,149 期,p.154-159,1999 年。
[26] A. L. Drehman, A. L. Greer and D. Turnbull, “Bulk formation of a metallic glass: Pd40Ni40P20”, Appl. Phys. Letter, Vol. 41, p. 716, 1982.
[27] C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough, “Preparation of amorphous Ni60Nb40 by mechanical alloying”, Appl. Phys. Lett., Vol. 43, pp. 1017-1019, 1983.
[28] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rate (Overview)”, Mater. Trans. JIM, Vol. 36, p. 866, 1995.
[29] A. Inoue, K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, p. 7, 1995.
[30] A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng., Vol. 226-228, p. 357, 1997.
[31] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method”, Mater. Trans. JIM, Vol. 32, pp. 609-616, 1991.
[32] X. M. Wang, I. Yoshii, A. Inoue, Y. H. Kim and I. B. Kim, “Bulk Amorphous Ni75-xNb5MxP20-yBy (M=Cr, Mo) Alloys with Large Supercooling and High Strength”, Mater. Trans. JIM, Vol. 40, pp. 1130-1136, 1999.
[33] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Mater. Trans. JIM, Vol. 32, p. 609, 1991.
[34] A. Peker, W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Appl. Phys. Lett., Vol. 63, p. 2342, 1993.
[35] A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Mater. Trans. JIM, Vol. 33, p. 937, 1992.
[36] W. H. Wang, C. Dong and C. H. Shek, “Bulk metallic glasses”, Materials Science and Engineering R., Vol. 44, pp. 45-89, 2004.
[37] S. J. Poon, G. J. Shiflet, V. Ponnambalam, V. M. Keppens, R. Taylor and G. Petculescu, “Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys”, Appl. Phys. Letter, Vol. 83, p. 1131, 2003.
[38] W. L. Johnson, “Bulk glass-forming metallic alloys: science and technology”, MRS Bull., Vol. 24, pp. 42-56, 1999.
[39] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method”, Mater. Trans. JIM, Vol. 32, No. 7, p. 609, 1991.
[40] Robert E., Reed-hill and Reza Abbaschian, Physical Metallurgy Principles, 3rd Ed., PWS Publishing Company, Boston, 1994.
[41] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., Vol. 48, pp. 279-306, 2000.
[42] G. N. Jackson, “R.F. sputtering”, Thin Solid Films, Vol. 5, p. 209, 1970.
[43] K. L. Chapre, “Thin Film Phenomena”, McGraw-Hill, 1969.
[44] H. S. Chen and D. Turnbull, “Thermal evidence of a glass transition in gold-silicon-germanium alloy”, J. Appl. Phys. Letter, Vol. 10, p. 284, 1967.
[45] M. H. Cohen, et al., “Metastability of Amorphous Structure” , Nature, Vol. 203, p. 964, 1964.
[46] W. Kauzmann, “ The nature of the glassy state and the behavior of liquids at low temperatures”, Chem. Rev., Vol. 43, pp. 219-256, 1948.
[47] D. Turnbull, “Thermodynamics and kinetics of formation of the glass state and initial devitrification”, Physics of Non-Crystalline Solides, By J. A. prins, North-Holland, pp.41-56, 1964.
[48] R. J. Greet and D. Turnbull, “ Test of Adam-Gibbs Liquid Viscosity Model with O-Terphenyl Specific-Heat Data”, J. Chem. Phys., Vol. 47, pp. 2185-2189, 1967.
[49] J. H. Gibbs and E. A. DiMarzio, “ Nature of the Glass Transition and Glass State”, J. Chem. Phys., Vol. 28, pp. 373-375, 1958.
[50] T. H. Hung, J. C. Huang, J. S. C. Jang and S. C. Lu, “Improved Thermal Stability of Amorphous Zr-Al-Cu-Ni Alloys with Si and B”, Mater. Tran. JIM, Vol. 48, pp. 239-243, 2007.
[51] A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications Institute of for Material Research”,Tohoku University Katahira 2-1-1, Sendai No.980, Japan, 1999.
[52] M. Heilmaier, “Deformation behavior of Zr-based metallic glasses”, Materials Processing Technology, Vol. 117, pp. 374-380, 2001.
[53] A. Inoue and C. Fan, “High-strength bulk nanostructure alloys consisting of compound and amorphous phases”, Mat. Res. Soc. Symp. Proc., Vol. 554, pp. 143-148, 1999.
[54]. Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses ”, Acta Metall., Vol. 50 , p. 3501, 2002.
[55] S. R. Elliot, “Physics of Amorphous Materials”, p. 30, 1990.
[56] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metall., Vol. 27, 1979.
[57] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, p. 407, 1977.
[58] J. P. Chu, J. C. Huang, J. S. C. Jang, Y. C. Wang, and P. K. Liiaw, “Thin film metallic glasses: preparations, properties, and applications”, JOM, Vol. 62, No. 4, p. 19, 2010.
[59] Y. Liu et al., “Proceedings of the 14th IEEE International Conference on Micro Electro and Mechanical Systems”, Piscataway, NJ:IEEE, pp. 102-105, 2001.
[60] P. Sharma, W. Zhang, K. Amiya, H. Kimura, A. Inoue, “Nanoscale Patterning of Zr-Al-Cu-Ni Metallic Glass Thin Films Deposited by Magnetron Sputtering”, J. Nanosci. Nanotech., Vol. 5, pp. 416-420, 2005.
[61] S. J. Bull, “Tribology of carbon coatings: DLC, diamond and beyond”, Diamond and Related Materials, Vol. 4, Issue: 5-6, pp. 827-836, 1995.
[62] A. Erdemir, “The role of hydrogen in tribological properties of diamond-like, carbon films”, Surface and Coatings Technology, Vol. 146-147, pp. 292-297, 2001.
[63] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res., Vol. 7, p. 1564, 1992.
[64] S. R. Elliot, “Physics of Amorphous Material”, 2nd Ed., USA, 1990.
[65] C. T. Liu, L. Heatherly, J. A. Horton, “Test environments and mechanical properties of Zr-base bulk amorphous alloys”, Metallurgical and Materials Transactions, Vol. 29, pp. 1811-1820, 2007.
[66] A Inoue, Akira Takeuchi and Tao Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, Vol. 29, pp. 1779-1793, 2007.
[67] J. L. Vossen and J. J. Cuomo, ”Thin Film Process”, Sec. II-1, Academic Press, p.155, 1978.
[68] A. S. Penfold, “Handbook of Thin Film Process Technology”, Sec. A3.1, Institute of Physics Publishing, 1995.
[69] J. E. Sundgren, B. O. Johansson, and S. E. Karlsson, “Character ization of TiN Films Growth by d.c reactive sputtering”, Surf. Sci., Vol. 128, p. 265, 1983.
[70] 賴耿陽,“IC 製程之濺射技術”,復漢出版社,1997 年。
[71] J. A. Berrios, J. G. La Barbera-Sosa, D. G. Teer and E. S. Puchi-Cabrera, “Fatigue properties of a 316L stainless steel coated with different ZrN deposits”, Surf. Coat. Technol., Vol. 179, pp. 145-157, 2004.
[72] E. S. Puchi-Cabrera, F. Martinez, I. Herrera, J. A. Berrios, S. Dixit and D. Bhat, “On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit”, Surf. Coat. Technol., Vol. 182 , pp. 276-286, 2004.
[73] J. P. Chu, C. M. Lee, R. T. Huang and P. K. Liaw, “Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects”, Surf. Coat. Technol., Vol. 205, pp. 4030-4034, 2010.
[74] ASTM C1161-02c, “Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature”, 2008.
[75] J. S. C. Jang, I. H. Wang, L. J. Chang, T. H. Hung and J. C. Huang, “Crystallization kinetics and thermal stability of the Zr60Al7.5Cu17.5Ni10Si4B1 amorphous alloy studied by isothermal differential scanning calorimetry and transmission electron microscopy”, Mater. Sci. and Eng., Vol. 449-451, pp. 511-516, 2007.
[76]. J. S. C. Jang, L. J. Chang, T. H. Hung, J. C. Huang and C. T. Liu, “Thermal stability and crystallization of Zr-Al-Cu-Ni based amorphous alloy added with boron and silicon”, Intermetallics., Vol. 14, pp. 951-956, 2006.
[77] H. S. Shin and Y. J. Jeong, “Strain rate dependence of deformation behavior in Zr-based bulk metallic glasses in the supercooled liquid region”, Journal of Alloys and Compounds, Vol. 434-435, pp. 40-43, 2007.
[78] C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, and R. A. Buchanan, “A 200 nm thick glass-forming metallic film for fatigue-property enhancements”, Appl. Phys. Lett., Vol. 88, p.131902, 2006.
[79] 賴耿陽,“薄膜製作工藝學”,復漢出版社,1999 年。
指導教授 鄭憲清(Jason Shian-Ching Jang) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明