博碩士論文 983203091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.109.119
姓名 戴昌偉(Chang-wei Dai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以微陽極導引電鍍法沉積奈米氧化鋅薄膜
(The Growth of ZnO Thin Films by Micro-anode Guided Electroplating)
相關論文
★ 凝膠濃度對胎盤幹細胞貼附及分化之影響★ 摻雜銀或銀銅氮氧化鉭薄膜之製備、特性分析及抗菌行為分析
★ 以反應式磁控濺鍍製備Ag2O/TiO2疊層薄膜及其特性之研究★ 以射頻磁控濺鍍法製備銦鋅氧化物(IZO)透明導電薄膜並探討製程參數對其薄膜之影響
★ 在一些氣候因素的預測和相關性的一些經濟和農業指標★ Fabrication and Characterization of Polymethylmethacrylate (PMMA) Thin Film by Plasma Polymerization
★ Effects of Diluted Ar in H2/SiH4 on Amorphous Hydrogenated Silicon Thin Film (i-layer) by an Inductive Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) System★ 評估貝里斯Rio Bravo保育管理區內硬木種類之樹高
★ 以HFSS 天線模擬程式為設計LTE Band 41設計天線★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ Economic feasibility for recycling crystalline silicon photovoltaics modules
★ 電漿聚合系統在不同功率下製成聚吡咯薄膜之特性及微結構分析★ Structural Study on BaCeO3 Perovskite Thin Film by Sputtering
★ 用於表面電漿共振光譜的多層金鋁薄膜的設計與優化★ 磁控濺射法製備氧氮化釩薄膜的製備和表徵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文採用間歇式微陽極導引電鍍法(Micro-anode Guided Electroplating, MAGE)在銅基材上局部位置沉積奈米氧化鋅薄膜。電鍍製程中,固定電解液之組成為2 mM ZnCl2 + 2.5 mM H2O2,溫度固定在80 ℃下,藉由電流密度、沉積電位及電鍍時間的變化,探討生成奈米薄膜之成長機制。
利用場發射電子顯微鏡(FE-SEM)觀察氧化鋅之形貌,發現會有一層一層(成核→成長→成膜)的成長模式,而隨著電鍍時間增加,此種現象會連續地發生,進而促使薄膜逐漸增厚,故此奈米薄膜結構、成長機制會深受電場強度之影響。同時氧化鋅薄膜之成分會經由X光光電子能譜儀(XPS)進行分析。分析結果發現除了氧化鋅鍵結(O1s鍵結能為530eV,Zn-2p3/2鍵結能為1021.6 eV及Zn-2p1/2鍵結能為1045.1eV)外還存在有氫氧化鋅鍵結(O1s鍵結能為531.6eV及Zn-2p3/2鍵結能為1022.3eV),推測是因為沉積過程中脫水不完全所產生。最後氧化鋅薄膜之結構會經由X光繞射分析儀(XRD)進行分析。分析結果得知氧化鋅結構為六角形纖鋅礦結構,且具有(101)之優選成長方向。
摘要(英) Thin film of nano ZnO was locally fabricated on copper substrates (purity at 99.9%) by intermittent micro-anode guided electroplating (MAGE) method in an aqueous solution containing 2 mM ZnCl2 and 2.5 mM H2O2 at 80 ℃. The current density, voltage and duration of electrochemical deposition were investigated for the growth mechanism of nano ZnO films.
Surface morphology of the nano ZnO film was examined by field-emission scanning electron microscope (FE-SEM). We found the continuous and layers of nano crystals were repeated on top of each other until the electrochemical deposition were finished. The parameters such as current density, voltage and deposition time were strongly influence the electrochemical kinetics and reaction mechanisms.
The structures and chemical compositions of ZnO layers were investigated by X-ray photoelectron spectroscopy (XPS). Result showed that zinc oxide (binding energy: 530eV and 1021.6eV in O1s and Zn-2p3/2 XPS spectra) and low concentration of zinc hydroxide (binding energy:531.6eV and 1022.3eV in O1s and Zn-2p3/2 XPS spectra) on the copper surface. Finally, the crystallinity of ZnO layers was analyzed by X-ray diffraction (XRD). Results indicated all the diffraction peaks can be indexed according to the wurtzite structure and the preferred growth orientation for ZnO is the (101) direction.
關鍵字(中) ★ 氧化鋅
★ 微陽極導引電鍍
★ 雙氧水
★ 氯化鋅
★ 銅
關鍵字(英) ★ hydrogen peroxide
★ Micro-anode guided electroplating
★ ZnO
★ zinc chloride
★ copper
論文目次 Chinese Abstract I
Abstract II
Figure Captions VI
Table Captions IX
Chapter 1 Introduction 1
1-1 Micro-Anode Guided Electroplating (MAGE) 1
1-2 Principle of electroplating 2
1-3 Zinc oxide 4
1-4 Motivation and Purpose of this work 6
Chpater 2 Experiment and Instruments 8
2-1 Setup of experiment 8
2-2 Experimental Preparations 9
2-2-1 Anode preparation 9
2-2-2 Cathode preparation 10
2-2-3 Electrolyte 12
2-2-4 Electrolytic cell 13
2-3 Guiding apparatus 13
2-3-1 Control system 13
2-3-2 Step motion motor 13
2-3-3 Direct current (DC) power supply 13
2-4 Experimental process 13
2-5 Analytical Instruments 15
Chapter 3 Results and Discussion – Galvanostatic Control and Potentiostatic Control 20
3-1 OCP measurement 20
3-2 Effect of applied different current density on the ZnO morphologies by galvanostatic control 21
3-3 Effect of applied different current density on electrochemical curve by galvanostatic control 22
3-4 Cathodic polarization curve measurement 23
3-5 Effect of applied different potential on the ZnO morphology and electrochemical curve by potentiostatic control 24
3-6 Effect of applied different deposition time on the ZnO morphology and electrochemical curve by potentiostatic control 27
3-7 Cross sections by Dual Beam Focused Ion Beam (FIB) 33
Chapter 4 Results and Discussion – Crystal Size, Composition and Structure Analysis 35
4-1 The crystal size analysis 35
4-2 The composition analysis 37
4-3 The structure analysis 42
4-4 Effect of electric field strength on the ZnO morphology at different locations 44
Chapter 5 Conclusions 48
Chapter 6 Future Work 49
Reference 51
參考文獻 [1] 黃俊強,”微電鍍法之製程參數對其製備鎳鐵合金微柱之形貌、機械性質與防蝕特性之影響”,國立中央大學,碩士論文,民國九十九年。
[2] 葉柏青,”微陽極導引電鍍與監測”,國立中央大學,碩士論文,民國九十二年。
[3] 楊仁泓,”微陽極導引電鍍法制備微析物之局部電場強度分析”,國立中央大學,博士論文,民國九十八年。
[4] 賴格源,”微陽極導引電鍍銅其組織及覆蓋範圍之探討”,國立中央大學,碩士論文,民國九十五年。
[5] Jian Weng, Yongjun Zhang, Guanqi Han, Yu Zhang, Ling Xu, Jun Xu, Xinfan Huang and Kunji Chen, “Electrochemical deposition and characterization of wide band semiconductor ZnO thin film”, Thin Solid Films, vol. 478, pp. 25-29, November 2004.
[6] Xiulan Hu, Yoshitake Masuda, Tatsuki Ohji and Kazumi Kato, “Control of crystal growth for ZnO nanowhisker films in aqueous solution”, Thin Solid Films, vol. 518, pp. 906-910, July 2009.
[7] Sheng Nan Sun, B. Mari, Hong-Lin Wu, M. Mollar and Hai Ning Cui, “Morphology and photoluminescence study of electrodeposition ZnO films”, Applied Surface Science, vol. 257(2010), pp. 985-989, August 2010.
[8] Y. L. Liu, Y.C. Liu, Y. X. Liu, D. Z. Shen, Y. M. Lu, J. Y. Zhang and X. W. Fan, “Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates”, Physica B, vol. 322(2002), pp. 31-36, November 2001.
[9] M.A. Hernandez-Fenollosa, L.C. Damonte, B. Mari, “Defects in electron irradiated ZnO single crystals”, Superlattices and Microstructures, vol. 38(2005), pp. 336-343, September 2005.
[10] Fazhan Wang, Zhizhen Ye, Dewei Ma, Liping Zhu, Fei Zhuge, “Formation of quasi-aligned ZnCdO nanorods and nanoneedles” Journal of Crystal Growth, vol. 283(2005), pp. 373-377, July 2005.
[11] 林書慶,”氧化鋅薄膜在光學元件上的應用與研究”,國立中山大學,碩士論文,民國九十七年。
[12] Chen Liangyuan, Liu Zhiyong, Bai Shouli, Zhang Kewei, Li Dianqing, Chen Aifan, Chung Chiun Liu, “Synthesis of 1-dimensional ZnO and its sensing property for CO”, Sensors and Actuators B: Chemical, vol. 143(2010), pp. 620-628, October 2009.
[13] K. Ogata, T. Komuro, K. Hama, K. Koike, ” Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy”, Applied Surface Science, vol. 237(2004), pp. 348-351, July 2004.
[14] K. Ogata, T. Hama, K. Hama, K. Koike, S.Sasa, M. Inoue, M. Yano, ”Characterization of alkanethoil/ZnO structures by X-ray photoelectron spectroscopy” Applied Surface Science, vol. 241(2005), pp. 146-149, October 2004.
[15] 陳致宏,”利用遠距離電漿氧化熱蒸鍍鋅層製作氧化鋅之製程與特性研究”,義守大學,碩士論文,民國九十七年。
[16] 塗家豪,”利用Ar+離子轟擊及熱氧化法製備氧化鋅奈米結構的表面型態及成分”,國立中央大學,碩士論文,民國九十八年
[17] 曹福君,“氧化鋅奈米線成長機制與材料特性之研究”,國立中央大學, 碩士論文,民國九十六年。
[18] Min Lai and Jason Riley, “Templated Electrosynthesis of Zinc Oxide Nanorods”, Chemical material, vol. 18, pp. 2233-2237, December 2005.
[19] O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K. Ono, B. Roldan Cuenya, H. Heinrich, “Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium”, Applied Surface Science, vol. 256(2010), pp. 1895-1907, October 2009.
[20] Zhifeng Liu, Lei E, Jing Ya and Ying Zin, “Growth of ZnO nanorods by aqueous solution method with electrodeposition ZnO seed layers”, Applied Surface Science, vol. 255, pp. 6415-6420, February 2009.
[21] Ye Feng, Wang Xindong, Yang Zhuanyu, Li Jingjing, Lin Caishun and Wang Tongtao, “Fabrication of high oriented ZnO nanorod arrays by galvanostatic deposition”, Rare Metals, vol. 27, pp. 513, October 2008.
[22] Naoya Nouzu, Atsushi Ashida, Takeshi Yoshimure and Norifumi Fujimura, “Control of cathodic potential for deposition of ZnO by constant-current electrochemical method”, Thin Solid Films, vol. 518(2010), pp. 2957-2960, October 2009.
[23] Atsushi Ashida, Akio Fujita, Yonggu Shim, Kazuki Wakita and Atsushi Nakahira, “ZnO thin films epitaxially grown by electrochemical deposition method with constant current”, Thin Solid Films, vol. 517, pp. 1461-1464, September 2008.
[24] E. Rayon, J. Cembrero and B. Mari, “Variable section ZnO nanostructures electrodeposited by dynamic polarization currents”, Materials Letters, vol. 64(2010), pp. 2601-2604, August 2010.
[25] Th. Pauporte and I. Jirka, “A method for electrochemical growth of homogeneous nanocrystalline ZnO thin films at room temperature.”, Electrochimica Acta, vol. 54(2009), pp. 7558-7564, August 2009.
[26] J. Elias, R. Tena-Zaera and C. Levy-Clement, “Electrodeposition of ZnO nanowires with controlled dimensions for photovoltaic appications: Role of buffer layer”, Thin Solid Films, vol. 515, pp. 8553-8557, April 2007.
[27] Sung Joong Kim, Hee-Gyoo Kang and Jinsub Choi, “Surfactant-free preparation of ZnO dendritic structures by electrochemical method”, Current Applied Physics, vol. 10(2010), pp. 740-743, September 2009.
[28] D. Dimova-Malnovska, P. Andreev , M. Sendova-Vassileva, H. Nichev, K. Starbova, “Preparation of ZnO nanowires by electrochemical deposition”, Energy Procedia, vol. 2(2010), pp. 55-58, December 2009.
[29] A. Goux, T. Pauporte, J. Chivot and D. Lincot, “Temperature effects on ZnO electrodeposition”, Electrochimica Acta, vol. 50(2005), pp. 2239-2248, December 2004.
[30] Gao Ren Li, Ci Ren Dawa, Qiong Bu, Fu Lin Zhen, Xi Hong Lu, Zhi Hai, Hai En Hong, Chen Zhong Yao, Peng Liu and Ye Xiang Tong, “Electrochemical synthesis of orientation-ordered ZnO nanorod bundles”, electrochemistry communications, vol. 9(2007), pp. 863-868, Jaunuary 2007.
[31] Farid Jamali Sheini, I.S. Mulla, Dilip S. Joag and Mahendra A. More, “Influenceof process variables on growth of ZnO nanowires by cathodic electrodeposition on zinc substrate”, Thin Solid Films, April 2009.
[32] Jamil Elias, Ramon Tena Zaera and Claude Levy Clement, “Effect of the Chemical Nature of the Anions on the Electrodeposition of ZnO Nanowire Arrays”, J. Phys. Chem.C, vol. 112(2008), pp. 5736-5741, Jaunuary 2008.
[33] Ravi Chander, and A. K. Raychaudhuri, “Electrodeposition of aligned arrays of ZnO nanorods in aqueous solution”, Solid State Communications, vol. 145(2008), pp. 81-85, October 2007.
[34] H. Cui, M. Mollar, B. Mari, “ Tailoring the morphology of electrodeposition ZnO and its photoluminescence properties”, Optical Material, vol. 33(2011), pp. 327-331, October 2010.
[35] 游政家、葉翳民, “以電沉積法製作大面積氧化鋅薄膜與奈米柱陣列”, Journal of Technology, Vol. 24, No. 3, pp. 191-196 (2009)
[36] 沈佑臻,”陰極電鍍法在銅基材表面成長氧化鋅奈米柱”,國立中央大學,碩士論文,民國九十九年。
[37] Yoshitake Masuda, Naoto Kinoshita, Kunihito Koumoto, “Morphology control of ZnO crystalline particles in aqueous solution”, Electrochemica Acta, vol. 53(2007), 171-174, March 2007.
[38] F. Fang, A M. C. Ng, X. Y.Chen, A. B. Djurisic, Y. C. Zhong, K. S. Wong, P. W. K. Fong, H. F. Lui, C. Surya and W. K. Chan, “Effect of Tm doping on the properties of electrodeposited ZnO nanorods”, Materials Chemistry and Physics, vol. 125, pp. 813-817, September 2010.
[39] Dianwu Wu, Mei Yang, Zhongbing Huang, Guangfu Yin, Xiaoming Liao, Yunqing Kang, Xianfu Chen, Hui Wang, “Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution”, Journal of Colloid and Interface Science, vol. 330(2009), pp. 380-385, October 2008.
[40] M. Fahoume, O. Maghfoul, M. Aggour, B. Hartiti, F. Chraibi, A. Ennaoui, “Growth and characterization of ZnO thin films prepared by electrodeposition technique”, Solar Energy Materials & Solar cells, vol. 90 (2006), pp. 1437-1444, Decenber 2005.
指導教授 李泉(Chuan Li) 審核日期 2012-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明