博碩士論文 983203105 詳細資訊


姓名 吳承恩(Cheng-en Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 6063 鋁合金熱處理與輥軋變形對陽極皮膜性質的影響
(The effect of 6063 Aluminum alloy heat treatment and cold-rolling process on the formation of AAO films.)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以探討6063 鋁合金陽極處理所生成多孔陽極皮膜為主軸。經由退火、
時效硬化與輥軋變形後,觀察其微結構、晶界角度分佈與析出物型態。再陽極處
理,並討論基地結構對陽極皮膜的影響。分析陽極過程中電壓與時間(V-t)變化曲
線,透過SEM 觀察前製程的微結構對陽極多孔皮膜生長行為的影響。並在V-t 曲
線的第四階段使用二次離子質譜儀(SIMS)與第二階段使用光電子能譜儀(XPS)分
析陽極皮膜組成成分。
由實驗結果發現到,EBSD 分析(O, O-T4-T6, O-rolling40%-T4-T6)晶界在中
高角度; O-T4-rolling40%-T6 觀察,晶界從中高角度大量轉變為低角度,因此6063
鋁合金經輥軋後微結構發生變化會影響Mg2Si 析出相變化。觀察V-t 曲線,經輥軋
後的試片在第二階段時電壓較高而第三階段所消耗能量較低,因此陽極孔洞數量
少而孔徑較大。觀察陽極皮膜的成份分析,因為輥軋變形後基地中產生差排和氫
氣,使氧化鋁膜矽(Si)離子減少,並且影響氫氧化鋁(AlOH)離子增加。X 光電子能
譜分析陽極氧化鋁膜主要由非晶氧化鋁Al-O-H 與水合氧化鋁Al(OH)3所組成。O 1s
部分分析退火材主要由非晶氧化鋁組成和少量Al-O 約10.5 %,O-rolling40%-T4-T6
與O-T4-rolling40%-T6 發現Al-O 增多。觀察Si 2p 部份分析6063 鋁合金陽極皮膜
中成分含有Al2SiO5。
摘要(英) The aim of the study is to investigate the effect of the anodic aluminum oxide film
(AAO film) formed on the 6063 aluminum alloy by using anodizing treatment. Through
the manufacturing process including annealing, artificial ageing treatment and
cold-rolling, the variation of AAO film of 6063 aluminum alloy revealed especially on
its microstructure, the angle of grain boundaries and the status of precipitate materials.
Furthermore, the anodizing was utilized to explore the influence on the AAO film from
the base structure. Also, voltage-time (V-t) curve in the process of anodizing was
recorded. After the above manufacturing process, the effect of the microstructure on the
growing behavior of the porous AAO film was observed by using SEM. In addition, the
SIMS was used to examine element the depth profiles of AAO film in the step 4 of V-t
curve. Then, the XPS was utilized to analyze the composition of AAO film surface in
the step 2 of V-t curve.
As the EBSD results indicated that the grain boundary was at medium/ high angle
present in O, O-T4-T6, O-rolling40%-T4-T6 specimens. In comparison, the main grain
boundary was low angle with O-T4-rolling40%-T6 specimen. Thus, the microstructure
of 6063 aluminum alloy significantly changed during the cold-rolling process. It
affected the Mg2Si precipitate particles, and the phase transformation occurred. In
respect to the variation of V-t curve, the voltage of the test fragment with cold-rolling
process became higher in the step 2. Moreover, the above test fragment consumed less
energy in the step 3. Concerning the cold-rolled 6063 aluminum alloy, therefore, it is
suggested that the decreasing of pore population, and increasing the pore diameter of the
AAO films.
As SIMS analysis, the distribution of Si ion reduced with depth of AAO film, and
AlOH was raised. Consequently, there were several findings from the XPS analysis as
III
following. In the O 1s analysis, the AAO film mainly contains of Al-O-H bonding phase,
Al(OH)3 hydrated oxide and several Al-O bonding phase. O-rolling40%-T4-T6 and
O-T4-rolling40%-T6 obtained higher Al-O bonding phase. Because of the dislocation
and hydrogen were produced in the Al matrix after the cold rolling process. Regarding
with the dimension of Si 2p, it was investigated that the main composition of AAO film
is Al2SiO5.
關鍵字(中) ★ 二次離子質譜儀
★ Mg2Si 析出相顆粒
★ 6063 鋁合金
★ 陽極氧化鋁
關鍵字(英) ★ Mg2Si
★ anodic aluminum oxide film
★ 6063 aluminum
論文目次 目錄
中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XI
第一章 前言 1
第二章 理論探討與文獻回顧 2
2-1 鋁合金的簡述 2
2-1-1 鋁合金的類型 2
2-2 鋁合金熱處理簡述 3
2-3 Al-Mg-Si簡介 4
2-4 Al-Mg-Si 合金的析出強化熱處理 6
2-4-1 Al-Mg-Si合金時效分析與析出過程 7
2-4-2 Al-Mg-Si合金兩段時效探討 10
2-4-3 金屬材料再結晶理論與過程 12
2-4-4 Al-Mg-Si合金輥軋(rolling)簡介 13
2-5 陽極處理 16
2-5-1 陽極皮膜種類與成長機制 17
2-5-2 陽極皮膜生成的電壓-時間曲線(V-t curve) 19
2-5-3 Al-Mg-Si合金時效後陽極之影響 22
第三章 實驗方法與步驟 23
3-1 實驗目的 23
3-2 實驗材料及試片準備 23
3-3 實驗儀器 23
3-4 實驗步驟 24
第四章 結果與討論 29
4-1 熱處理與輥軋變形的分析 29
4-1-1 6063-O微結構分析 29
4-1-2 6063-O-T4-T6微結構分析 36
4-1-3 退火-輥軋-T4-T6與退火-T4-輥軋-T6 微結構分析 39
4-1-4 6063鋁合金微結構綜論 46
4-2 陽極皮膜性質分析 47
4-2-1 二次離子質譜儀(SIMS)分析陽極皮膜 55
4-2-2 陽極皮膜X射線光電子能譜(XPS)分析 60
4-2-3 陽極皮膜色澤的變化 67
第五章 結論 68
參考文獻 69
附錄 76
參考文獻 [1]J. E. Hatch, “Aluminum properties and physical metallurgy ” , American society for metals , 1984
[2]W. B. Lee , “The improvement of mechanical properties of friction-stir-welded A356 Al alloy” , Materials science and Engineering A , 355 , pp.154-159 , 2003
[3]L. Zhen, W. D. Fei, S. B. Kang, H. W. Kim, ”Precipitation behaviour of Al-Mg-Si alloys with high silicon content”, Journal of Materials Science 32, pp.1895-1902, 1997
[4]M. Takeda, F. Ohkubo, T. Shirai, K. Fukui, “Precipitation behavior of Al-Mg-Si ternary alloys”, Materials Science Forum, Vol.217-222, pp.815-820, 1996
[5]日本輕金屬學會委員, “鋁合金之組織與性質”, 日本輕金屬學會, pp.278
[6]W. H. Cubberly, Heat treating, 9th ed., Metals Handbook, Vol.22, American Society for Metals, Metals Park, OH, pp.674– 676, 1981
[7]D. Apelian, S. Shivkumar and G. Sigworth, “Foundmental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Trans, Vol.97,pp.727-742, 1989
[8]葉均蔚等編著,“鋁合金之析出硬化”,材料工程實驗與原理,修訂版,全華圖書,新北市土城區,民國九十七年三月。
[9]I.Dutta, S. M.Allen, “A calorimetric study of precipitation in commerical aluminum alloy 6061” , Journal of materials science letters, Vol.10, pp.323-326, 1991
[10]G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper, ”The Precipitation Sequence in Al-Mg-Si Alloy”, Acta Materialia, Vol.46, pp.3893-3904, 1998
[11]M. Takeda, F. Ohkubo, T. Shiral, “Stability of metastable phases and microstructures in the ageing process of Al–Mg–Si ternary alloys”, Journal of materials science letters, Vol.33, pp.2385-2390, 1998
[12]K. Matsuda and S. Ikeno, “Microstructures of aged Al–Mg–Si alloys”, Journal of Japan Institute of Light Metals, Vol.53, pp.457-462, 2003
[13]W. F. Miao, D. E. Laughlin, “Precipitation Hardening in Aluminum Alloy 6022 ”, Scripta Materialia, Vol.40, pp.873-878, 1999
[14]A. Lutts, “ Pre-precipitation in Al-Mg-Ge and Al-Mg-Si ”, Acta Metallurgica, Vol.9, pp.577-586, 1961
[15]F. R. Fickett, “Aluminum-1. A review of resistive mechanisms in aluminum ”, Cryogenics, Vol.11, pp.349-367, 1971
[16]B. Raeisinia and W. J. Poole, “ Electrical resistivity measurements: A sensitive tool for studying aluminum alloys ”, Materials Science Forum , Vol.519-521, pp.1391-1396, 2006
[17]C. Panseri, T. Federighi, “A Resistometric Study of Preprecipitation in an Aluminium-1.4% Mg2Si Alloy”, Journal of the Institute of Metals, Vol.94, pp.99-107, 1966
[18]M. H. Mulazimoglu, R. A. L. Drew and J. E. Gruzelski, “Electrical conductivity of aluminum-rich Al-Si-Mg alloys”, Journal of Materials Science Letters, Vol.8, pp.297-300, 1989
[19]H. Seyedreza, D. Grebennikov, P. Mascherb, H. S. Zuroba, “Study of the early stages of clustering in Al–Mg–Si alloys using the electrical resistivity measurements”, Materials Science and Engineering A, Vol.525, pp.186-191, 2009
[20]T. Hirata, S. Matsuo, “Two-Step Ageing Behaviours in an Al-1.2wt.%Mg2Si Alloy”, Transactions of the Japan Institute of Metals, Vol.13, pp.231-237, 1972
[21]H. HATTA, S. MATSUDA, H. YOSHIDA, “Two-step aging behaviors of Al–Mg–Si alloy extrusions”, Journal of Japan Institute of Light Metals, Vol.56, pp.667-672, 2006
[22]D. W. Pashley, M. H. Jacobs, J. T. Vietz, “The basic processes affecting Two-step Ageing in an Al-Mg-Si Alloy”, The Philosophical Magazine, Vol.16, pp.51-76, 1967
[23]G. W. Lorimer, R. B. Nicholson, “Further results on the nucleation of precipitates in the Al-Zn-Mg system”, Acta Metallurgica, Vol.14, pp.1009-1013, 1966
[24]Y. Baba, A. Takashima, “Influence of Composition on the Two-Stage Aging of Al-Mg-Si Alloys”, The Japan Institute of Metals, Vol.10, pp.196-204, 1969
[25]N. Ohenda, M. Shimura, Y. Takeuchi, “Two-stepped ageing of Al-1.3% Mg2Si alloy”, Light Metal, Vol.19, pp.41-46, 1969
[26]B. L. Ou, C. H. Shen, “Effect of preaging on precipitation behavior in aluminum alloy 6063 during high-temperature aging”, Scandinavian Journal of Metallurgy, Vol.33, pp.105-112, 2004
[27]G. E. Dieter, Mechanical Metallurgy, SI Metric Edition, McGraw-Hill Book Company, London, (1989/3/1), pp.184-240
[28]R. Hill, E. Robert, Abbaschian, Reza, Physical Metallurgy Principles, Third edition, Thomson Learning, Boston, (1991/11/1), pp227-269
[29]T. Sakai, H. Miura, A. Goloborodko, O. Sitdikov, “Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475”, Acta Materialia, Vol.57, pp.153-162, 2009
[30]J. P. Lin, T. C. Lei, X. Y. An, “Dynamic Recrystallization during Hot Compression in Al-Mg Alloy”, Scripta Metallurgica, Vol.26, pp.1869~1874, 1992
[31]S. K. Panigrahia, R. Jayaganthan, V. Pancholia, M. Gupta, “A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy”, Materials Chemistry and Physics, Vol.122, pp.188-193, 2010
[32]S. K. Panigrahia, R. Jayaganthan, V. Pancholi, “Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy”, Materials and Design, Vol.30, pp.1894-1901, 2009
[33]S. K. Panigrahia, R. Jayaganthan, “Development of ultrafine grained Al–Mg–Si alloy with enhanced strength and ductility”, Journal of Alloys and Compounds, Vol.470, pp.285-288, 2009
[34]S. K. Panigrahia, R. Jayaganthan, “A study on the mechanical properties of cryorolled Al–Mg–Si alloy”, Materials Science and Engineering A, Vol.480, pp.299-305, 2008
[35]S. K. Panigrahia, R. Jayaganthan, V. Chawla, “Effect of cryorolling on microstructure of Al–Mg–Si alloy”, Materials Letters, Vol.62, pp.2626-2629, 2008
[36]S. K. Panigrahia, R. Jayaganthan, “Effect of annealing on precipitation, microstructural stability, and mechanical properties of cryorolled Al 6063 alloy”, Journal of Materials Science, Vol.45, pp.5624-5636, 2010
[37]S. K. Panigrahia, R. Jayaganthan, “Effect of rolling temperature on microstructure and mechanical properties of 6063 Al alloy”, Materials Science and Engineering A, Vol.492, pp.300-305, 2008
[38]S. K. Panigrahia, R. Jayaganthan, “Influence of solutes and second phase particles on work hardening behavior of Al 6063 alloy processed by cryorolling”, Materials Science and Engineering A, Vol.528, pp.3147-3160, 2011
[39]H. Masuda, F. Hasegwa, S. Ono, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, Journal of The Electrochemical Society, Vol.144, pp.127-130, 1997
[40]G.E. Thompson, “Porous anodic alumina: fabrication, characterization and applications”, Thin Solid Films, Vol.297, pp.192-201, 1997
[41]O. Jessensky, F. Müller, U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina” , Applied Physics Letters, Vol.72, pp.1173-1175, 1998
[42]J. P. O’Sullivan, G. C. Wood, “The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.317, pp.511-543, 1970.
[43]G. E. Thompson and G. C. Wood, “Porous Anodic Film Formation on Aluminum”, Nature, Vol.290, pp.230-232, 1981.
[44]Y. S. Kim, S. I. Pyun, S. M. Moon, J. D. Kim, “The effects of Applied Potential and pH on The Electrochemical Dissolution of Barrier Layer in Porous Anodic Oxide Film on Pure Aluminum”, Corrosion Science, Vol.38, pp.329-336, 1996.
[45]G. C. Wood, J. P. O’Sullivan, “The Anodizing of Aluminium in Sulphate Solutions”, Electrochimica Acta, Vol.15, pp.1865-1876, 1970.
[46]G. Patermarakis, P. Lenas, Ch. Karavassilis, G. Papayiannis, “Kinetics of Growth of Porous Anodic Al2O3 Films on A1 Metal”, Electrochimica Acta, Vol.36, pp.709-725, 1991.
[47]G. Patermarakis, K. Moussoutzanis, J. Chandrinos, “Discovery by kinetic studies of the latent physicochemical processes and their mechanisms during the growth of porous anodic alumina films in sulfate electrolytes”, Journal of Solid State Electrochemistry, Vol.6, pp.39-54, 2001
[48]T. S. Shih, P. S. Wei and “Monitoring the progressive development of an anodized film on aluminum”, Journal of the Electrochemical Society, Vol.154, pp.678-683, 2007
[49]T. S. Shih, P. S. Wei, Y. S. Yung, “Optical properties of anodic aluminum oxide films on Al1050 alloys”, Surface & Coatings Technology, Vol.202, pp.3298-3305, 2008
[50]I. Farnan, R. Dupree, A. J. Forty, Y. S. Jeong, G. E. Thompson and G.C. Wood, “Structural information about amorphous anodic alumina from Al MAS NMR”, Philosophical Magazine Letters, Vol.59, pp.189-195, 1989
[51]T. P. Hoar and J. Yahalom, “The initiation of pores in anodic oxide films formed on aluminum in acid solutions”, Journal of the Electrochemical Society, Vol.110, pp.614-621, 1963
[52]I. Tsangaraki-Kaplanoglou, S. Theohari, Th. Dimogerontakis, Y. M. Wang , H. H. Kuo, S. Kia, “Effect of alloy types on the anodizing process of aluminum”, Surface & Coatings Technology, Vol.200, pp.2634-2641, 2006
[53]S. Wernick, R. Pinner, P. G. Sheasby, “The Surface Treatment and Finishing of Aluminum and Its Alloys”, ASM International and Finishing Publications, Ltd., Teddington, U.K. 5th ed, pp.286-368, 1987
[54]G. Horvath, N. Q. Chinh, J. Gubicza, J. Lendvai, “Plastic instabilities and dislocation densities during plastic deformation in Al–Mg alloys”, Materials Science and Engineering A, Vol.445-446, pp.186-192, 2007
[55]R. Ozao, H. Yoshida, T. Inada, M. Ochiai, “Sulfur Concentration in Nanoporous Alumina Membrane: Studied by TA and XPS”, Journal of Thermal Analysis and Calorimetry, Vol.72, pp.113-118, 2003
[56]A. K. Ray, G. Das, M. Das, S. Ghosh, P. Dubey, “Effect of aging on mechanical properties of 6063 Al-alloy using instrumented ball indentation technique” , Materials Science and Engineering A, Vol.527, pp.1590-1594, 2010
[57]D. Kuhlman-Wilsdorf, “Regular deformation bands (DBs) and the LEDS hypothesis”, Acta Materialia, Vol.47, pp.1697-1712, 1999
[58]R. S. Yassar, D. P. Field, H. Weiland, “The Effect of Cold Deformation on the Kinetics of the β” Precipitates in an Al-Mg-Si Alloy”, Metallurgical and Materials Transactions A, Vol.36A, pp.2059-2064, 2005
[59]J. C. Walmsley, C. J. Simensen, A. Bjørgum, F. Lapique, K. Redford, “The Structure and Impurities of Hard DC Anodic Layers on AA6060 Aluminium Alloy”, The Journal of Adhesion, Vol.84, pp.543-561, 2008
[60]L. E. Fratila-Apachitei, F. D. Tichelaar, G. E. Thompson, H. Terryn, P. Skeldon, J. Duszczyk, L. Katgerman, “A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys”, Electrochimica Acta, Vol.49, pp.3169-3177, 2004
[61]G. E. Thompson, P. Skeldon, X. Zhou, K. Shimizu, H. Habazaki, C. J. E. Smith, “Improving the performance of aerospace alloys”, Aircraft Engineering and Aerospace Technology, Vol.75, pp.372-379, 2003
[62]M. R. Alexander, G. E. Thompson, G. Beamson, “Characterization of the oxide-hydroxide surface of aluminum using x-ray photoelectron spectroscopy-a procedure for curve fitting the O 1s core level” , Surface and Interface Analysis, Vol.29, pp.468-477, 2000
[63]H. M. Liao, R. N. S. Sodhi, T. W. Coyle, “Surface composition of AlN powders studied by x‐ray photoelectron spectroscopy and bremsstrahlung‐excited Auger electron spectroscopy”, Journal of Vacuum Science & Technology A, Vol.11, pp.2681-2686, 1993
[64]S. Feliu, Jr., Ma. J. Bartolomé, J. A. González, S. Feliu, “XPS Characterization of Porous and Sealed Anodic Films on Aluminum Alloys”, Journal of The Electrochemical Society, Vol.154, pp.C241-C248, 2007
[65]John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, “Handbook of X Ray Photoelectron Spectroscopy”, Physical Electronics, 1995-02-01
指導教授 施登士(Teng-Shih Shih) 審核日期 2011-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡