博碩士論文 983204002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.220.6.150
姓名 林裕祥(Yu-Hsiang Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米粒子於奈米複合材料中之分散機制
(Dispersion Mechanism of Nanoparticles in the Nanocomposites)
相關論文
★ 反離子的凝聚作用和釋放於界劑溶液中添加鹽類的影響之研究★ 以離子型界劑溶解微脂粒之研究
★ 奈米添加物對微乳液滴靜電特性的影響–蒙地卡羅模擬法★ W/O型微乳液液滴之電荷分佈量測
★ 溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究★ 明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化
★ 膽固醇與膽鹽對微脂粒穩定度的影響★ 電解質溶液的表面張力-蒙地卡羅模擬法
★ 稀薄聚電解質溶液中的反離子凝聚現象★ 溫度不敏感性之電動力學行為於毛細管區域電泳
★ 以熱力學性質定義帶電粒子的電荷重正化現象★ 聚乙二醇與界面活性劑的作用
★ 聚電解質溶液中的反離子凝聚現象★ 聚電解質在中性高分子溶液中的泳動行為
★ 在聚電解質溶液中的有效電荷★ 以分散粒子動力學法模擬雙性團聯共聚物微胞之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高分子奈米複合材料是以奈米粒子為添加物,加入高分子材料中,使材料同時具備高分子的原始性質與奈米粒子所增進的性質,例如機械強度上的提升等。增進的性質與材料內部奈米粒子的分散性有很大的關連,奈米粒子分散性越佳增進效果越佳,因此近期有許多研究探討奈米粒子在高分子基質中的分散機制。其中Mackay et al.認為當高分子迴旋半徑(radius of gyration, Rg)大於奈米粒子半徑時,奈米粒子會分散於高分子基質中,反之則聚集呈現相分離狀態。因此我們使用電腦模擬的方式來探討奈米粒子在高分子基質中聚集行為,並驗證Mackay et al.所提出的理論。
本研究利用耗散粒子動力學的模擬方法探討疏高分子與親高分子的奈米粒子在高分子基質中聚集程度的影響,以及造成聚集的原因。疏高分子的奈米粒子在高分子基質中最終會形成聚集,驅使奈米粒子聚集的原因是由系統內能降低為主導。實驗上所觀察到奈米粒子在較長的高分子基質中有較佳的分散性,是由於系統黏度的影響,造成分散型態上的差異。奈米粒子在長度較長的高分子基質中因系統黏度高,擴散係數較低,聚集速度較慢,所觀察到的分散程度較佳。較短的高分子中系統黏度低,擴散係數較高,聚集速度較快,所觀察到的分散程度較差。親高分子的奈米粒子在長度較長的高分子基質中也會形成聚集,驅使奈米粒子聚集的原因是由系統亂度上升為主導。奈米粒子間的作用力會隨著奈米粒子間的接觸面積與斥力參數的變化而有所不同,其形成原因類似於空乏力,系統傾向於最小空乏區與最大系統亂度的趨勢。
摘要(英) Dispersing nanoparticles in polymer matrix allows for the formulation of novel polymer nanocomposite materials that combine the properties and functionality of the nanoparticle and the polymer. It’s important to understand dispersion of nanoparticles in polymer matrix. In experiment, dispersion of nanoparticles into a polymer matrix is enhanced for systems where the radius of gyration of the linear polymer is greater than the radius of the nanoparticle.
We perform the Dissipative Particle Dynamics (DPD) simulation to study the dispersion mechanism of nanoparticles in the polymer matrix. For solvophobic nanoparticles, nanoparticles inevitably aggregate in polymer matrix, and aggregation is driven by the reduction of enthalpy. Experimental results show that nanoparticles tend to disperse in polymer matrix with large radius of gyration, this phenomenon is attributed to the high viscosity of system, reducing the diffusion coefficient cause nanoparticles slowly aggregate. For solvophilic nanoparticles, nanoparticles similarly aggregate in polymer matrix, and aggregation is driven by the increase of entropy. The effective interparticle force is similar to depletion attraction. The whole system tends to minimum depletion zone and maximum entropy. The effective intperparticle force depends on contact area of nanoparticles and repulsive parameter.
關鍵字(中) ★ 分散機制
★ 奈米粒子
★ 奈米複合材料
關鍵字(英) ★ Nanocomposites
★ Nanoparticles
★ Dispersion Mechanism
論文目次 摘要 I
目錄 V
圖目錄 VII
表目錄 X
表目錄 X
第一章 緒論 1
1.1簡介(Introduction) 1
1.2複合材料(Composites) 2
1.2.1 機械性質提升 3
1.2.2 熱學性質改進 4
1.2.3 光電性質應用 6
1.3 填充材料在高分子基質中分散行為 7
1.3.1 奈米複合材料合成製造方法 8
1.3.2 填充材料與高分子基質間交互作用 10
1.4 空乏力(depletion interaction) 12
第二章 模擬原理與方法 15
2.1 Dissipative Particle Dynamic 15
2.2 DPD原理 17
2.2.1 DPD作用力 17
2.2.2 長度、速度、時間尺度的無因次化 21
2.2.3 積分法求解 22
2.2.4 噪訊和時間尺度(Noise and Timestep) 24
2.2.5 週期性邊界條件 24
2.2.6 Cell list 表列法 25
2.3 斥力參數和Flory-Huggins Theory 26
2.4 模擬參數 30
第三章 結果與討論 34
3.1 疏溶劑奈米粒子在高分子基質 34
3.1.1 分散程度變化 34
3.1.2 系統能量變化 39
3.1.3 擴散係數 40
3.1.4 疏溶劑奈米粒子分散機制 42
3.2 親溶劑奈米粒子在高分子基質 44
3.2.1 分散程度變化 44
3.2.2 系統能量變化 48
3.2.3 粒子間作用力變化 48
3.2.4 親溶劑奈米粒子分散機制 54
第四章 結論 55
第五章 參考文獻 56
參考文獻 1. D.R. Paul, L.M. Robeson, Polymer nanotechnology : Nanocomposites, Polymer, 49, 3187, 2008.
2. Shiren Wang, Richard Liang, Ben Wang, Chuck Zhang, Dispersion and thermal conductivity of carbon nanotube composites, Carbon, 47, 53, 2009.
3. J. Jancar, J.F. Douglas, F.W. Starr, S.K. Kumar, P. Cassagnau, A.J. Lesser, S.S. Sternstein, M.J. Buehler, Current issues in research on structure-property relationships in polymer nanocomposites, Polymer, 51, 3321, 2010.
4. Mayu Si, Tohru Araki, Harald Ade, A. L. D. Kilcoyne, Robert Fisher, Jonathan C. Sokolov, Miriam H. Rafailovich, Compatibilizing Bulk Polymer Blends by Using Organoclays, Macromolecules, 39, 4793, 2006.
5. Alaitz Ruiz de Luzuriaga, Hans J. Grande, Jose A. Pomposo, Phase diagrams in compressible weakly interacting all-polymer nanocomposites, J. Chem. Phys., 130, 2009.
6. Michael E. Mackay, Anish Tuteja, Philip M. Duxbury, Craig J. Hawker, Brooke Van Horn, Zhibin Guan, Guanghui Chen, R. S. Krishnan, General Strategies for Nanoparticle Dispersion, Science, 311, 1740, 2006.
7. Joseph H. Koo., Polymer nanocomposites : processing, characterization, and applications, McGraw-Hill, New York, 2006.
8. Srinivasan, K., Composite Materials : production, properties, testing and applications, Alpha Science Intl. Ltd., Oxford, 2009.
9. Chung, Deborah D. L., Composites materials : functional materials for modern technologies, Springer, New York, 2003.
10. Ajayan, P. M., Schadler, L.S., Braun, P.V., Nanocomposite science and technology, Wiley-VCH, Weinheim, 2003.
11. Huaizhi Geng, Rachel Rosen, Bo Zheng, Hideo Shimoda, Leslie Fleming, Jie Liu, Otto Zhou, Fabrication and Properties of Composites of Poly(ethylene oxide) and Functionalized Carbon Nanotubes, Adv. Mater., 14, 19, 1387, 2002.
12. Raquel Verdejo, Fabienne Barroso-Bujans, Miguel Angel Rodriguez- Perez, Jose Antonio de Saja, Miguel Angel Lopez-Manchado, Functionalized graphene sheet filled silicone foam nanocomposites, J. Mater. Chem., 18, 2221, 2008.
13. Sung Heum Park, Anshuman Poy, Serge Beaupre, Shinuk Cho, Nelson Coates, Ji Sun Moon, Daniel Moses, Mario Leclerc, Kwanghee Lee, Alan J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photonic, 3, 297, 2009.
14. Shifeng Yan, Jingbo Yin, Yan Yang, Zhengzhan Dai, Jia Ma, Xuesi Chen, Surface-grafted silica linked with L-lactic acid oligomer: A novel nanofiller to improve the performance of biodegradeable poly(L-lactide), Polymer, 48, 1688, 2007.
15. Qi-Fang Li, Yihui Xu, Jin-San Yoon, Guang-Xin Chen, Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: the mechanical, electrical and EMI shielding properties, J. Matter Sci., 46, 2324, 2011.
16. Anish Tuteja, Philip M. Duxbury, Michael E. Mackay, Multifunctional Nanocomposites with Reduced Viscosity, Macromolecules, 40, 9427, 2007.
17. Jose A. Pomposo, Alaitz Ruiz de Luzuriaga, Agustin Etxeberria, Javier Rodriguez, Key role of entropy in nanoparticle dispersion : polystyrene-nanoparticle/linear-polystyrene nanocomposites as a model system, Phys. Chem. Chem. Phys., 10, 650, 2008.
18. Tai-His Fan, Remco Tuinier, Hydronamic interaction of two colloids in nonadsorbing polymer solution, Soft Matter, 6, 647, 2010.
19. Poon, W. C. K., The physics of a model colloid-polymer mixture, J. Phys.: Condens. Matter, Vol. 14, 859, 2002.
20. R. Tuinier, J. Rieger, C.G. de Kruif, Depletion-induced phase separation in colloid-polymer mixtures, Adv. Colloid Interface Sci., 103, 1, 2003.
21. J. C. Crocker, J. A. Matteo, A. D. Dinsmore, A. G. Yodh, Entropy Attraction and Repulsion in Binary Colloids Probed with a Line Optical Tweezer, Phys. Rev. Lett., 82, 21, 4352, 1999.
22. J. B. Hooper, K. S. Schweizer, T. G. Desai, R. Koshy, P. Keblinski, Structure, surface excess and effective interactions in polymer nanocomposites melts and concentrated solutions, J. Chem. Phys., 121, 14, 6986, 2004.
23. P. J. Hoogerbrugge, J. M. V. A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhys. Lett., 19, 155, 1992.
24. R. D. Groot, P. B. Warren, Dissipative particle dynamics : Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107, 4423, 1997.
25. P. Español and P. Warren, Statistical Mechanics of Dissipative Particle Dynamics, Europhys. Lett. 30, 191, 1995.
26. J. B. Gibson, K. Chen and S. Chynoweth, Simulation of Particle Adsorption onto a Polymer-Coated Surface Using the Dissipative Particle Dynamics Method, J. Colloid Interface Sci. 206, 464, 1998
27. M. P. Allan & D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1987.
28. R. D. Groot, T. J. Madden, Dynamic simulation of diblock copolymer microphase separation, J. Chem. Phys. 108, 8713, 1998.
29. D. C. Rapaport, The art of molecular dynamics simulation, Cambridge Univ. Press, Cambridge, 2001.
指導教授 曹恒光(Heng-kwong Tsao) 審核日期 2011-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明