博碩士論文 983204004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.217.6.114
姓名 劉晏碩(Yen-Shuo Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
(Doping of cation, anion, and cation-anion co-doping in the p-type SnO2 thin films and the construction of the induced cation vacancy model)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 通過水熱和溶劑熱法合成銅奈米晶體之研究
★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究★ 含銅鎳之錫薄膜線之電致遷移研究
★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究★ 電遷移誘發銅墊層消耗動力學之研究
★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究★ 錫鎳覆晶接點之電遷移研究
★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響★ 覆晶凸塊封裝之兩界面反應交互作用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此篇論文研究之目的為探討各種陽離子與陰離子摻雜對於p型氧化錫的自由電洞之貢獻。藉由摻雜鋁、氮與氮化鋁於氧化錫薄膜中來探討陽離子、陰離子與陰陽離子共摻雜之影響。由實驗得知,將低摻雜比例的鋁摻雜於氧化錫中無法有效貢獻自由電洞,而氮摻雜與氮化鋁摻雜則可成功使氧化錫由n型轉換成p型半導體。藉由光電子能譜儀XPS分析,本研究可得知氮離子取代氧離子貢獻電洞為形成p型氧化錫之主要原因。然而,由於氮離子於氧化錫中呈現不穩定之狀態,造成氮離子摻雜濃度無法有效提升。且氮離子在氧化錫薄膜中會逐漸逸散(outgassing),放置於大氣中會因氮離子的逸散使p型氧化錫逐漸轉換為n型。而本研究發現藉由共摻雜鋁,氮離子在氧化錫中的溶解度與穩定性可得到有效提升。
對於鋁離子摻雜之氧化錫薄膜導電機制,本研究大幅提高鋁摻雜於氧化錫薄膜之濃度,本研究得知(1)僅有高濃度鋁摻雜能達成p型氧化錫;(2)藉由較高的氧分壓下進行熱退火來降低氧空缺反而會降低自由電洞的生成;(3)於高溫熱處理造成氧化錫結晶相的生成為達成p型氧化錫必要的條件。除了傳統陽離子取代以提供電洞之機制外,本研究提出氧空缺會吸引取代錫之鋁離子,進而產生局部極化並誘導錫空缺生成。此外,本研究推測僅有價電子為三價之陽離子作異質摻雜能有效誘導錫空缺生成,於文獻蒐集之結果中得知此機制適用於所有藉由陽離子摻雜而達成之p型氧化錫。
摘要(英) In this study, the variety of cation and anion doped p-type SnO2 were discussed. In chapter 1, according to the literatures, the cation dopants show the poor efficiency for contributing the p-type conduction. Even though the anion (N) dopants have a higher doping efficiency compared to the cation dopants, the unstable chemical properties cause N atoms difficult to retain in SnO2 phase. In chapter 2, the electrical properties of transparent Al-doped SnO2, N-doped SnO2, and AlN-doped SnO2 thin films were studied. The N-doped SnO2 and AlN-doped SnO2 thin films demonstrated the p-type conduction with proper thermal annealing. XPS analysis verified the substituted N3- ions in the O ion sites in the annealed N-doped SnO2 and AlN-doped SnO2 thin films, which is responsible for the n-to-p conduction transition of the N-doped SnO2 and AlN-doped SnO2 thin films. However, the substituted N3- ions in the p-type N-doped SnO2 thin films outgas easily and the p-to-n conduction transition would occur in the high temperature annealing. With Al doping in the AlN-doped SnO2 thin films, a significant improvement in the stability of the substituted N3- ions was observed, which is caused by the formation Sn-N-Al bond improves the stability of the substituted N3- ions in the AlN-doped SnO2 thin films.
In chapter 3, the Al-doped SnO2 thin films were used to study the source of p-type conduction by cation doping. Three findings; (1) the p-type conduction for Al-doped SnO2 only achieved with extremely high Al concentration, (2) the decreasing oxygen vacancy concentration limits the p-type conduction, (3) the crystallity of the Al-doped SnO2 at high annealing temperature is a necessary factor for the p-type conduction. The induced cation vacancy model was proposed to explain the hole source for the high cation-doped p-type SnO2, which is adopted for all the cation-doped p-type SnO2 reported in the literatures. The results showed that only trivalence-charge cation can have a higher doping efficiency for p-type SnO2.
關鍵字(中) ★ p-type transparent conductive SnO2
★ cation doping
★ anion doping
★ induced cation vacancy
★ XPS
關鍵字(英) ★ p型透明氧化錫
★ 陽離子摻雜
★ 陰離子摻雜
★ 陽離子空缺誘導
★ XPS光電子能譜儀
論文目次 Chinese abstract I
Abstract II
List of Figures V
List of Tables VIII

Chapter 1 Introduction 1
1.1 Transparent conductive oxide 1
1.2 Transparent conductive tin oxide 1
1.3 Cation dopants for p-type SnO2 3
1.4 Anion dopants and cation-anion co-dopants for p-type SnO2 10

Chapter 2 The study of Al and N doping effect on p-type SnO2 thin films 13
2.1 Introduction 13
2.2 Experimental procedure 14
2.3 Results and discussion 14

Chapter 3 Effect of induced cation vacancies on the electrical properties of p-type SnO2 transparent conductive oxide 42
3.1 Introduction 42
3.2 Experimental procedure 44
3.3 Results 45
3.4 Discussions 56

Chapter 4 Conclusion 67
Reference 71
參考文獻 1. Tamura, S.; Ishida, T.; Magara, H.; Mihara, T.; Tabata, O.; Tatsuta, T., Transparent Conductive Tin Oxide Films by Photochemical Vapour Deposition. Thin Solid Films 1999, 343.
2. Nuruddin, A.; Abelson, J. R., Improved Transparent Conductive Oxide/P(+)/I Junction in Amorphous Silicon Solar Cells by Tailored Hydrogen Flux During Growth. Thin Solid Films 2001, 394, 49-63.
3. Liu, Y. S.; Hsieh, C. I.; Wu, Y. J.; Wei, Y. S.; Lee, P. M.; Liu, C. Y., Transparent P-Type Aln:Sno2 and P-Aln:Sno2/N-Sno2:In2o3 P-N Junction Fabrication. Applied Physics Letters 2012, 101, 122107.
4. Ni, J.; Zhao, X.; Zheng, X.; Zhao, J.; Liu, B., Electrical, Structural, Photoluminescence and Optical Properties of P-Type Conducting, Antimony-Doped Sno2 Thin Films. Acta Materialia 2009, 57, 278-285.
5. Yang, T.; Qin, X.; Wang, H.-h.; Jia, Q.; Yu, R.; Wang, B.; Wang, J.; Ibrahim, K.; Jiang, X.; He, Q., Preparation and Application in P–N Homojunction Diode of P-Type Transparent Conducting Ga-Doped Sno2 Thin Films. Thin Solid Films 2010, 518, 5542-5545.
6. Huang, Y.; Li, G.; Feng, J.; Zhang, Q., Investigation on Structural, Electrical and Optical Properties of Tungsten-Doped Tin Oxide Thin Films. Thin Solid Films 2010, 518, 1892-1896.
7. Babar, A. R.; Shinde, S. S.; Moholkar, A. V.; Bhosale, C. H.; Kim, J. H.; Rajpure, K. Y., Physical Properties of Sprayed Antimony Doped Tin Oxide Thin Films: The Role of Thickness. Journal of Semiconductors 2011, 32, 053001.
8. Benhaoua, A.; Rahal, A.; Benhaoua, B.; Jlassi, M., Effect of Fluorine Doping on the Structural, Optical and Electrical Properties of Sno2 Thin Films Prepared by Spray Ultrasonic. Superlattices and Microstructures 2014, 70, 61-69.
9. Elangovan, E.; Ramamurthi, K., A Study on Low Cost-High Conducting Fluorine and Antimony-Doped Tin Oxide Thin Films. Applied Surface Science 2005, 249, 183-196.
10. Elangovan, E.; Shivashankar, S. A.; Ramamurthi, K., Studies on Structural and Electrical Properties of Sprayed Sno2:Sb Films. Journal of Crystal Growth 2005, 276, 215-221.
11. NARASIMHA RAO, K.; SHAMALA, K. S.; MURTHY, L. C. S., Effect of Antimony and Fluorine Doping on Electrical, Optical and Structural Properties of Tin Oxide Films Prepared by Spray Pyrolysis Method. Surface Review and Letters 2006, 13, 357-364.
12. Rahal, A.; Benramache, S.; Benhaoua, B., The Effect of the Film Thickness and Doping Content of Sno2:F Thin Films Prepared by the Ultrasonic Spray Method. Journal of Semiconductors 2013, 34, 093003.
13. Rey, G.; Ternon, C.; Modreanu, M.; Mescot, X.; Consonni, V.; Bellet, D., Electron Scattering Mechanisms in Fluorine-Doped Sno2 Thin Films. Journal of Applied Physics 2013, 114, 183713.
14. Shanthi, E.; Dutta, V.; Banerjee, A.; Chopra, K. L., Electrical and Optical Properties of Undoped and Antimony‐Doped Tin Oxide Films. Journal of Applied Physics 1980, 51, 6243-6251.
15. Tsuchiya, T.; Nakajima, T.; Shinoda, K., Electrical Properties of Sb-Doped Epitaxial Sno2 Thin Films Prepared Using Excimer-Laser-Assisted Metal–Organic Deposition. Applied Physics B 2013, 113, 333-338.
16. Gokulakrishnan, V.; Parthiban, S.; Jeganathan, K.; Ramamurthi, K., Investigations on the Structural, Optical and Electrical Properties of Nb-Doped Sno2 Thin Films. Journal of Materials Science 2011, 46, 5553-5558.
17. Huang, Y.; Zhang, Q.; Li, G., Transparent Conductive Tungsten-Doped Tin Oxide Polycrystalline Films Prepared on Quartz Substrates. Semiconductor Science and Technology 2009, 24, 015003.
18. Lee, S. w.; Kim, Y.-W.; Chen, H., Electrical Properties of Ta-Doped Sno[Sub 2] Thin Films Prepared by the Metal–Organic Chemical-Vapor Deposition Method. Applied Physics Letters 2001, 78, 350.
19. Luo, L.; Bozyigit, D.; Wood, V.; Niederberger, M., High-Quality Transparent Electrodes Spin-Cast from Preformed Antimony-Doped Tin Oxide Nanocrystals for Thin Film Optoelectronics. Chemistry of Materials 2013, 25, 4901-4907.
20. Seo, Y. J.; Kim, G. W.; Sung, C. H.; Anwar, M. S.; Lee, C. G.; Koo, B. H., Characterization of Transparent and Conductive Electrodes of Nb-Doped Sno2 Thin Film by Pulsed Laser Deposition. Current Applied Physics 2011, 11, S310-S313.
21. Turgut, G.; Keskenler, E. F.; Aydın, S.; Sönmez, E.; Doğan, S.; Düzgün, B.; Ertuğrul, M., Effect of Nb Doping on Structural, Electrical and Optical Properties of Spray Deposited Sno2 Thin Films. Superlattices and Microstructures 2013, 56, 107-116.
22. Lee, S.-Y.; Park, B.-O., Structural, Electrical and Optical Characteristics of Sno2:Sb Thin Films by Ultrasonic Spray Pyrolysis. Thin Solid Films 2006, 510, 154-158.
23. Lee, S. W.; Daga, A.; Xu, Z. K.; Chen, H., Characterization of Mocvd Grown Optical Coatings of Sc2o3 and Ta-Doped Sno2. Materials Science and Engineering: B 2003, 99, 134-137.
24. Kim, Y.-W.; Lee, S. W.; Chen, H., Microstructural Evolution and Electrical Property of Ta-Doped Sno2 Films Grown on Al2o3(0001) by Metalorganic Chemical Vapor Deposition. Thin Solid Films 2002, 405, 256-262.
25. Toyosaki, H.; Kawasaki, M.; Tokura, Y., Electrical Properties of Ta-Doped Sno[Sub 2] Thin Films Epitaxially Grown on Tio[Sub 2] Substrate. Applied Physics Letters 2008, 93, 132109.
26. Ahmed, S. F.; Khan, S.; Ghosh, P. K.; Mitra, M. K.; Chattopadhyay, K. K., Effect of Al Doping on the Conductivity Type Inversion and Electro-Optical Properties of Sno2 Thin Films Synthesized by Sol-Gel Technique. Journal of Sol-Gel Science and Technology 2006, 39, 241-247.
27. Bagheri-Mohagheghi, M. M.; Shahtahmasebi, N.; Alinejad, M. R.; Youssefi, A.; Shokooh-Saremi, M., Fe-Doped Sno2 Transparent Semi-Conducting Thin Films Deposited by Spray Pyrolysis Technique: Thermoelectric and P-Type Conductivity Properties. Solid State Sciences 2009, 11, 233-239.
28. Bagheri-Mohagheghi, M.-M.; Shokooh-Saremi, M., Electrical, Optical and Structural Properties of Li-Doped Sno2 Transparent Conducting Films Deposited by the Spray Pyrolysis Technique: A Carrier-Type Conversion Study. Semiconductor Science and Technology 2004, 19, 764-769.
29. Huang, Y.; Ji, Z.; Chen, C., Preparation and Characterization of P-Type Transparent Conducting Tin-Gallium Oxide Films. Applied Surface Science 2007, 253, 4819-4822.
30. Ji, Z.; He, Z.; Song, Y.; Liu, K.; Ye, Z., Fabrication and Characterization of Indium-Doped P-Type Sno2 Thin Films. Journal of Crystal Growth 2003, 259, 282-285.
31. Ji, Z.; Zhao, L.; He, Z.; Zhou, Q.; Chen, C., Transparent P-Type Conducting Indium-Doped Sno2 Thin Films Deposited by Spray Pyrolysis. Materials Letters 2006, 60, 1387-1389.
32. Mao, Q.; Ji, Z.; Zhao, L., Mobility Enhancement of P-Type Sno2by in-Ga Co-Doping. physica status solidi (b) 2010, 247, 299-302.
33. Ni, J.; Zhao, X.; Zhao, J., P-Type Transparent Conducting Sno2:Zn Film Derived from Thermal Diffusion of Zn/Sno2/Zn Multilayer Thin Films. Surface and Coatings Technology 2012, 206, 4356-4361.
34. Ni, J. M.; Zhao, X. J.; Zhao, J., Structural, Electrical and Optical Properties of P-Type Transparent Conducting Sno2:Zn Film. Journal of Inorganic and Organometallic Polymers and Materials 2011, 22, 21-26.
35. Ravichandran, K.; Thirumurugan, K., Type Inversion and Certain Physical Properties of Spray Pyrolysed Sno2:Al Films for Novel Transparent Electronics Applications. Journal of Materials Science & Technology 2014, 30, 97-102.
36. Ravichandran, K.; Thirumurugan, K.; Jabena Begum, N.; Snega, S., Investigation of P-Type Sno2:Zn Films Deposited Using a Simplified Spray Pyrolysis Technique. Superlattices and Microstructures 2013, 60, 327-335.
37. Zhao, J.; Zhao, X. J.; Ni, J. M.; Tao, H. Z., Structural, Electrical and Optical Properties of P-Type Transparent Conducting Sno2:Al Film Derived from Thermal Diffusion of Al/Sno2/Al Multilayer Thin Films. Acta Materialia 2010, 58, 6243-6248.
38. Sujatha Lekshmy, S.; Joy, K., Structural and Optoelectronic Properties of Indium Doped Sno2 Thin Films Deposited by Sol Gel Technique. Journal of Materials Science: Materials in Electronics 2014.
39. Sujatha Lekshmy, S.; Joy, K., Sno2 Thin Films Doped Indium Prepared by the Sol–Gel Method: Structure, Electrical and Photoluminescence Properties. Journal of Sol-Gel Science and Technology 2013, 67, 29-38.
40. Bagheri-Mohagheghi, M.-M.; Shokooh-Saremi, M., The Electrical, Optical, Structural and Thermoelectrical Characterization of N- and P-Type Cobalt-Doped Sno2 Transparent Semiconducting Films Prepared by Spray Pyrolysis Technique. Physica B: Condensed Matter 2010, 405, 4205-4210.
41. Bagheri-Mohagheghi, M.-M.; Shokooh-Saremi, M., The Influence of Al Doping on the Electrical, Optical and Structural Properties of Sno2 Transparent Conducting Films Deposited by the Spray Pyrolysis Technique. Journal of Physics D: Applied Physics 2004, 37, 1248-1253.
42. Ji, Z.; Xi, J.; Huo, L.; Zhao, Y., Preparation of P-Type Transparent Conducting Tin-Antimony Oxide Thin Films by Dc Reactive Magnetron Sputtering. physica status solidi (c) 2008, 5, 3364-3367.
43. Pan, S. S.; Ye, C.; Teng, X. M.; Fan, H. T.; Li, G. H., Preparation and Characterization of Nitrogen-Incorporated Sno2 Films. Applied Physics A 2006, 85, 21-24.
44. Pan, S. S.; Wang, S.; Zhang, Y. X.; Luo, Y. Y.; Kong, F. Y.; Xu, S. C.; Xu, J. M.; Li, G. H., P-Type Conduction in Nitrogen-Doped Sno2 Films Grown by Thermal Processing of Tin Nitride Films. Applied Physics A 2012, 109, 267-271.
45. Pan, S. S.; Li, G. H.; Wang, L. B.; Shen, Y. D.; Wang, Y.; Mei, T.; Hu, X., Atomic Nitrogen Doping and P-Type Conduction in Sno[Sub 2]. Applied Physics Letters 2009, 95, 222112.
46. Cho, H. J.; Park, K. Y.; Heo, S. N.; Song, T. K.; Ko, H. J.; Koo, B. H., Electrical and Optical Properties of P-Type Transparent Conducting Sno2 Al Sno2 Thin Films Prepared by Rf Sputtering. 9th International Conference on Fracture & Strength of Solids 2013, June 9-13.
47. Park, K.-Y.; Kim, G.-W.; Seo, Y.-J.; Heo, S. N.; Ko, H. J.; Lee, S.-H.; Song, T. K.; Koo, B. H., Effect of Annealing Temperature on Properties of P-Type Conducting Al/Sno2/Al Multilayer Thin Films Deposited by Sputtering. Journal of Ceramic Processing Research 2012, 13, 5.
48. Lee, C.-H.; Choi, D.-J.; Oh, Y.-J., Characterization of the P-Type Sn1−X Mn X O2 Oxide Semiconductor Nanoparticles by Sol-Gel Method. Electronic Materials Letters 2013, 9, 283-286.
49. Lee, C.-H.; Nam, B.-A.; Choi, W.-K.; Lee, J.-K.; Choi, D.-J.; Oh, Y.-J., Mn:Sno2 Ceramics as P-Type Oxide Semiconductor. Materials Letters 2011, 65, 722-725.
50. Ni, J. M.; Zhao, X. J.; Li, B. B.; Zheng, M. D.; Peng, T., Study on Preparation and Application Performance of P-Type Conducting Sno2 Ceramic Target. Key Engineering Materials 2014, 599, 338-345.
51. Yu, S.; Zhang, W.; Li, L.; Xu, D.; Dong, H.; Jin, Y., Fabrication of P-Type Sno2 Films Via Pulsed Laser Deposition Method by Using Sb as Dopant. Applied Surface Science 2013, 286, 417-420.
52. Zhuang, L.; Wong, K. H., Fabrication of Transparent P-N Junction Composed of Heteroepitaxially Grown P-Li0.15ni0.85o and N-Zno Films for Uv-Detector Applications. Applied Physics A 2007, 87, 787-791.
53. Scanlon, D. O.; Watson, G. W., On the Possibility of P-Type Sno2. Journal of Materials Chemistry 2012, 22, 25236.
54. Ding, X.; Fang, F.; Jiang, J., Electrical and Optical Properties of N-Doped Sno2 Thin Films Prepared by Magnetron Sputtering. Surface and Coatings Technology 2013, 231, 67-70.
55. Limpijumnong, S.; Li, X.; Wei, S.-H.; Zhang, S. B., Substitutional Diatomic Molecules No, Nc, Co, N[Sub 2], and O[Sub 2]: Their Vibrational Frequencies and Effects on P Doping of Zno. Applied Physics Letters 2005, 86, 211910.
56. Thirumurugan, K.; Ravichandran, K.; Mohan, R.; Snega, S.; Jothiramalingam, S.; Chandramohan, R., Effect of Solvent Volume on Properties of Sno2:Al Films. Surface Engineering 2013, 29, 373-378.
57. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269-71.
58. Perkins, C. L.; Lee, S.-H.; Li, X.; Asher, S. E.; Coutts, T. J., Identification of Nitrogen Chemical States in N-Doped Zno Via X-Ray Photoelectron Spectroscopy. Journal of Applied Physics 2005, 97, 034907.
59. Wang, C.-T.; Lai, D.-L.; Chen, M.-T., Surface and Catalytic Properties of Doped Tin Oxide Nanoparticles. Applied Surface Science 2010, 257, 127-131.
60. Duan, L.; Lin, B.; Zhang, W.; Zhong, S.; Fu, Z., Enhancement of Ultraviolet Emissions from Zno Films by Ag Doping. Applied Physics Letters 2006, 88, 232110.
61. Shewale, P. S.; Ung Sim, K.; Kim, Y.-b.; Kim, J. H.; Moholkar, A. V.; Uplane, M. D., Structural and Photoluminescence Characterization of Sno2: F Thin Films Deposited by Advanced Spray Pyrolysis Technique at Low Substrate Temperature. Journal of Luminescence 2013, 139, 113-118.
62. Wang, Y.; Ma, J.; Ji, F.; Yu, X.; Ma, H., Structural and Photoluminescence Characters of Sno2:Sb Films Deposited by Rf Magnetron Sputtering. Journal of Luminescence 2005, 114, 71-76.
63. Chien, J. F.; Shih, H. Y.; Liao, H. Y.; Lin, R. M.; Shyue, J. J.; Chen, M. J., P-Type Conductivity of Mgzno:(N:Ga) Thin Films Prepared by Remote Plasma in-Situ Atomic Layer Doping. ECS Journal of Solid State Science and Technology 2013, 2, R249-R253.
64. Sun, X. Q.; Long, R.; Cheng, X. F.; Zhao, X.; Dai, Y.; Huang, B. B., Structural, Electronic, and Optical Properties of N-Doped Sno2. J Phys Chem C 2008, 112, 9861-9864.
65. Balakrishnan, L.; Premchander, P.; Balasubramanian, T.; Gopalakrishnan, N., Aln Codoping and Fabrication of Zno Homojunction by Rf Sputtering. Vacuum 2011, 85, 881-886.
66. Mohanta, K.; Batabyal, S. K.; Pal, A. J., Pn-Junction Rectifiers Based on P-Zno and N-Zno Nanoparticles. Chemistry of Materials 2007, 19, 3662-3666.
67. Wang, X.; Zhang, Y.; Wang, Y.; Ma, T.; Liang, T., Lanthanum Concentration Dependence of Electrical Properties in Tin Oxide Thin Films. Journal of Materials Science: Materials in Electronics 2012, 24, 889-895.
68. Batlle, X.; Hattink, B. J.; Labarta, A. l.; Åkerman, J. J.; Escudero, R.; Schuller, I. K., Quantitative X-Ray Photoelectron Spectroscopy Study of Al/Alo[Sub X] Bilayers. Journal of Applied Physics 2002, 91, 10163.
69. Lützenkirchen-Hecht, D.; Frahm, R., Structure of Reactively Sputter Deposited Tin-Nitride Thin Films: A Combined X-Ray Photoelectron Spectroscopy, in Situ X-Ray Reflectivity and X-Ray Absorption Spectroscopy Study. Thin Solid Films 2005, 493, 67-76.
70. Nelin, C. J.; Bagus, P. S.; Brown, M. A.; Sterrer, M.; Freund, H. J., Analysis of the Broadening of X-Ray Photoelectron Spectroscopy Peaks for Ionic Crystals. Angewandte Chemie 2011, 50, 10174-7.
71. Bagus, P.; Viinikka, E.-K., Origin of Satellite Structure in the Valence X-Ray Photoelectron Spectrum of Co: A Theoretical Study. Physical Review A 1977, 15, 1486-1496.
72. Bagus, P. S.; Ilton, E. S.; Nelin, C. J., The Interpretation of Xps Spectra: Insights into Materials Properties. Surface Science Reports 2013, 68, 273-304.
73. Anjos, D.; Rigsby, M.; Wieckowski, A., Binding Energy Shifts for Cu and Ag Upd on Rh(111) Determined by Online Ec-Xps. ECS Transactions 2010, 28, 47-58.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2014-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明