博碩士論文 983204010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.138.114.198
姓名 陳昱碩(Yu-Shou Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 核殼結構奈米金或銀/二氧化鈦之合成及其在光催化反應之應用
(Photocatalytic Destruction of Methylene Blue on Au@TiO2 or Ag@TiO2: Effect of Core Size and Shell Thickness)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之目的在於發展高催化活性之核殼結構光觸媒,並將其應用於有機汙染物之分解。摻雜貴金屬於二氧化鈦表面可以提高光催化效率,由於金屬在表面形成電子活性點以促進界面電荷轉移。此種觸媒結構雖然活性好,但容易造成暴露在外的金屬與其他表面介質產生作用,使金屬容易溶解或腐蝕,導致觸媒活性衰退。核殼結構可以克服此缺點,將貴金屬置於內核,而二氧化鈦當作殼層。
本研究利用膠體凝膠法合成金/二氧化鈦及銀/二氧化鈦核殼結構光觸媒,並利用不同製備條件 (CTAB濃度、聯胺與硝酸銀比例、貴金屬前驅物濃度與水熱溫度) 來達到控制貴金屬核的粒徑大小、貴金屬擔載量以及二氧化鈦的結晶性。觸媒鑑定方面,主要是以紫外可見光光譜儀(UV-vis)、動態散射粒徑分析儀(DLS)、感應偶合電漿質譜分析儀(ICP)、X光繞射儀(XRD)、穿透式電子顯微鏡(TEM)、高解析穿透式電子顯微鏡(HRTEM)與X光電子能譜儀(XPS)進行鑑定與分析。並以兩支8w波長為254 nm的紫外燈管為光源進行亞甲基藍的光催化反應測試。
在TEM圖、紫外可見光光譜以及動態散射粒徑分析儀結果顯示,改變CTAB的濃度能有效控制Au@TiO2中金核的顆粒大小在6.6到32.37 nm之間,然而在Ag@TiO2中則需要改變聯胺和硝酸銀的比例才能夠控制銀核的顆粒大小,其大小則在6.82到15.35 nm之間。在X光繞射分析顯示隨著水熱的溫度增加,二氧化鈦的結晶性與結晶大小也會增加。
光反應活性之鑑定以10 ppm亞甲基藍水溶液為光反應標準物,以兩支8 w 波長為254 nm 的紫外光燈管當作光源,光降解樣品取樣利用紫外可見光光譜儀(UV-vis)分析濃度。在不同貴金屬核顆粒大小中,小的粒徑由於有較好的電子捕捉性因此有較好的活性,但活性變化不大。在Au@TiO2 與Ag@TiO2中最適化的金屬擔載量分別為1wt.% 及0.5wt.%。此外光催化活性也與水熱溫度成正比,其主要由於增加水熱溫度,會增加二氧化鈦的結晶性,而晶型結構明顯的二氧化鈦,可以增加光子進入內核的量子效率。
總結上述結果,在Metal@TiO2核殼型光觸媒中,貴金屬核的大小並不是影響活性的主要因素,而是與二氧化鈦殼層的結晶性、貴金屬的種類與擔載量有關。
摘要(英) The purpose of this study was to develop a catalyst with high photocatalytic activity and had core/shell structure. It could be applied to the decomposition of organic pollutants under UV light illumination. The literature shows that doping precious metal on the surface of titanium dioxide can enhance the photocatalytic activity because noble metal can form active sites to promote the electronic charge transfer in the interface of metal and titanium dioxide. Although the activity of this kind of structure is high, the exposed metal is easy to dissolve or corrosive, leading to catalyst decay. Core/shell structure can be used to overcome this shortcoming, noble metals located in the core, while titanium dioxide is in the shell.
In this study, Au@TiO2 and Ag@TiO2 catalysts with core/shell structure were synthesized by sol-gel method with hydrothermal treatment. Different preparation parameters lead to different sizes of metal core, different crystal size of TiO2 and different crystallinity of TiO2. These catalysts were characterized by UV-vis spectroscopy (UV-vis), Dynamic light scattering analyzer (DLS), inductively-coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS).
TEM micrographs, UV-vis spectra and DLS results showed the Au core size of Au@TiO2 could effectively be controlled between 6.6 and 32.37 nm by different CTAB concentration. However, the Ag core size of Ag@TiO2 could just be controlled between 6.82 and 15.35 nm by different ratio of hydrazine to silver nitrate. XRD patterns exhibited the crystallinity of TiO2 increased with increasing the temperature of hydrothermal process.
The photoreaction was carried out in a 10 ppm methylene blue solution with two 8w 254 nm UV light as the light source. The concentration of MB in the degradation samples were measured by UV-vis spectrometer (UV-vis). The effect of various metal core sizes, various noble metals loading amount and the hydrothermal temperature were investigated. The results showed the small metal core size had slightly higher activity than the larger ones, and the optimal amounts of Au and Ag loading were 1wt. % and 0.5 wt. %, respectively. Furthermore, the sample with the highest hydrothermal temperature had the highest activity due to the highest crystallinity.
From these results, the photocatalytic activity of Metal@TiO2 catalyst mainly depended on the crystallinity of TiO2, the amount of noble metal loading and the kinds of cocatalyst rather than the size of noble metal core.
關鍵字(中) ★ 光觸媒
★ 核殼結構
★ 亞甲基藍降解
★ 奈米金
★ 奈米銀
★ 二氧化鈦
★ 膠體溶膠法
★ 水熱法
關鍵字(英) ★ gold
★ silver
★ hydrothermal method
★ methylene degradation.
★ sol-gel method
★ photocatalyst
★ titanium dioxide
★ core/shell structure
論文目次 中文摘要 i
Abstract iii
Table of Contents v
List of Tables viii
List of Figures x
Chapter 1. Introduction 1
Chapter 2. Literature Review 3
2.1 Properties of titanium dioxide 3
2.2 Mechanism of Photocatalysis 5
2.2.1 Bulk TiO2 5
2.2.2 Surface-modified TiO2 8
2.2.3 Composite TiO2 11
2.2.4 Metal@TiO2 Core-shell structure 12
2.3 Titanium dioxide nanoparticle by liquid phase synthesis method 13
2.3.1 Sol-gel method 13
2.3.2 Hydrothermal method 15
2.3.3 Co-precipitation 16
2.3.4 Microemulsion method 16
2.3.5 Electrochemical method 17
2.3.6 Combustion method 17
2.4 Modified titanium dioxide 18
2.4.1 Noble metal doping 18
2.4.2 Transition metal doping 22
2.4.3 Anion doping 24
2.4.4 Composite TiO2 24
2.4.5 Synthesis of core-shell structure 25
2.5 Application of photocatalyst 26
2.6 Photoactivity test by Methylene blue destruction 30
Chapter 3. Experimental 34
3.1 Materials 34
3.2 Preparation of Au@TiO2 nanoparticles 34
3.2.1 Different Au core size 35
3.2.2 Different Au loading amount 35
3.2.3 Different hydrothermal treatment 35
3.3 Preparation of Ag@TiO2 nanoparticles 36
3.3.1 Different Ag core size 37
3.3.2 Different Ag loading amount 37
3.3.3 Different hydrothermal treatment 37
3.4 Characterization 38
3.4.1 UV-Vis 38
3.4.2 DLS 38
3.4.3 ICP-MS 38
3.4.4 XRD 39
3.4.5 TEM and HRTEM 39
3.4.6 XPS 40
3.5 Photoactivity test by methylene blue destruction 40
3.5.1 Apparatus of liquid phase reaction 40
3.5.2 Concentration calculation 41
Chapter 4. Photocatalytic Destruction of Methylene Blue on Au@TiO2: Effect of Core Size and Shell Thickness 43
4.1 Introduction 43
4.2 Effect of Au core size 45
4.2.1 Characteristics of Au sols were determined by UV-vis and DLS 45
4.2.2 Characteristics of Au@TiO2 48
4.3 Effect of various Au loading amount 59
4.3.1 Characteristics of Au sols were determined by UV-vis 59
4.3.2 Characteristics of Au@TiO2 60
4.4 Effect of Hydrothermal treatment 69
4.4.1 Characteristics of Au@TiO2 69
4.5 Summary 77
Chapter 5. Photocatalytic Destruction of Methylene Blue on Ag@TiO2: Effect of Core Size and Shell Thickness 79
5.1 Introduction 79
5.2 Effect of Ag core size 81
5.2.1 Characteristics of Ag sols were determined by UV-vis and DLS 81
5.2.2 Characteristics of Ag@TiO2 85
5.3 Effect of various Ag loading amount 96
5.3.1 Characteristics of Ag sols were determined by UV-vis 96
5.3.2 Characteristics of Ag@TiO2 98
5.4 Effect of Hydrothermal treatment 106
5.4.1 Characteristics of Ag@TiO2 106
5.5 Summary 114
Chapter 6. Conclusion 116
Reference 118
參考文獻 Abdulla-Al-Mamun, M.; Kusumoto, Y.; Zannat, T. and Islam, M., “Synergistic cell-killing by photocatalytic and plasmonic photothermal effects of Ag@TiO2 core–shell composite nanoclusters against human epithelial carcinoma (HeLa) cells”, Appl. Catal. A: G. (2011).
Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G. and Falaras, P.,” Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange”, Appl. Catal. B (2003), 42, 187-201.
Andersson, M.; Osterlund, L.; Ljungstrom, S. and Palmqvist, A., “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol”, J. Phys. Chem. B (2002), 106, 10674-10679.
Aruna, S. T.; Tirosh, S. and Zaban, A., “Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers”, J. Mater. Chem. (2000), 10, 2388-2391.
Balek, V.; Li, D.; Subrt, J.; Vecernikova, E.; Hishita, S., Mitsuhashi, T. and Haneda, H., “Characterization of nitrogen and fluorine co-doped titania photocatalyst : Effect of temperature on microstructure and surface activity properties”, J. Phys. Chem. Solid (2007), 68, 5-6, 770-774.
Babapour, A.; Akhavan, O.; Azimirad, R. and Moshfegh, A. Z., “Physical characteristics of heat-treated nano-silvers dispersed in sol-gel silica matrix”, Nanotechnology (2006), 17, 763-771.
Carp, O.; Huisman, C. L. and Reller, A.,”Photoinduced reactivity of titanium dioxide”, Progess in Solid State Chemistry (2004), 32, 33-177.
Chang, S. M.; Lo, P. H.; Chang, C. T.,”Photocatalytic behavior of TOPO-capped TiO2 nanocrystals for degradation of endocrine disrupting chemicals”, Applied Catalysis B: Environmental (2009), 91, 619-627.
Chen, Q.; Tang, C. and Zheng, G., “First-principles study of TiO2 anatase (101) surfaces doped with N”, Physica B (2009), 404, 1074-1078.
Chen, Y.; Zhu, B.; Yao, M.; Wang, S. and Zhang, S.,”The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation”, Catalysis Communications (2010), 1003-1007.
Cheng, B.; Le, Y. and Yu, J., ”Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires”, Journal of Hazardous Materials (2010).
Chhabra, V.; Pillai, V.; Mishra, B. K.; Morrone, A., Shah, D. O.,” Synthesis, Characterization, and Properties of Microemulsion-Mediated Nanophase TiO2 Particles”, Langmuir (1995), 11, 3307-3311.
Choi, H.; Al-Abed, S. R.; Dionysiou, D. D.; Stathatos, E. and Lianos, P., “TiO2-Based Advanced Oxidation Nanotechnologies for Water Purificationand Reuse”, Sustainability Science and Engineering (2010), 2.
Choi, W. Y.; Termin, A. and Hoffmann, M. R., “Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles”, Angew. Chem. Int. Ed. (1994), 98, 13669-13679.
Chuang, H. Y. and Chen, D. H., “Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles”, Nanotechnology (2009), 20, 105704-105714.
Colmenares, J. C.; Aramendia, M. A.; Marinas, A.; Marinas, J. M. and Urbano, F. J., “Synthesis, characterization and photocatalytic activityof different metal-doped titania systems”, Applied Catalysis A: General (2006), 306, 120-127.
Diebold, U., ”The Surface Science of Titanium Dioxide”, Surface science reports, 48, 53-229 (2003).
Dobosz, A. and Sobczynski, A., “The influence of silver additives on titania photoactivity in the photooxidation of phenol”, Water Res. (2003), 37, 1489-1496.
Eshaghi, A.; Pakshir, M. and Mozaffarinia, R.,” Photoinduced properties of nanocrystalline TiO2 sol–gel derived thin films”, Bull. Mater. Sci. (2010), 33, 4, 365-369.
Fan, X.; Chen, X.; Zhu, S. Li, Z.; Yu, T. ; Ye, J. and Zou, Z., “The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2”, J. Mol. Catal. A: Chem. (2008), 284, 155-160.
Fetterolf, M. L.; Patel, H. V. and Jennings, J. M., “Adsorption of methylene blue and acid blue 40 on titania from aqueous solution”, J. Chem. Eng. Data (2003), 48, 831-835.
Frank, S. N. and Bard, A. J., “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders”, J. Phys. Chem. (1977), 81, 1484-1488
Fujishima, A. and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature (1972), 238, 37-38.
Fujishima, A., Hashimoto, K. and Watanabe, T., “TiO2 Photocatalysis Fundamentals and Applications, BKC Inc., Japan, 1999.
Fujishima, A.; Rao, T. N. and Tryk, D. A., “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews (2000), 1, 1–21.
Gaya U. I. and Abdullah A. H.,” Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews (2008), 9, 1–12.
Giannakopoulou, T.; Todorova, N.; Trapalis, C and Vaimakis, T., “Effect of fluorine doping and SiO2 under-layer on the optical properties of TiO2 thin films”, Mater. Lett. (2007), 61, 23-24, 4474-4477.
Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y. and Chen, X., “Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale”, J. Phys. Chem. B (2004), 108, 4, 1230-1240.
Gratzel, M., “Heterogeneous Photochemical Electro Transfer”, CRC Press: Boca Raton, 1989.
Hada, R.; Amritphale, A.; Amritphale, S. S. and Dixit, S.;” A Novel Mixed Reverse Microemulsion Route for the Synthesis of Nanosized Titania Particles”, The Open Mineral Processing Journal (2010), 3 , 68-72.
Harada, Y.; Ogawa, K.; Irie, Y.; Endo, H.; Feriljr, L. B.; Uemura, T. and Tachibana, K., “Ultrasound activation of TiO2 in melanoma tumors”, Journal of Controlled Release (2011), 149, 190-195.
Herrmann, J. M.; Tahiri, H.; Ait-Ichou, Y.; Lassaletta, G.; Gonzaez-Elipe, A. R. and Fernandez, A., “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz”, Appl. Catal. B-Environ (1997), 13, 219-228.
Hirakawa, Tsutomu and Kamat, Prashant V, “Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters under UV-Irradiation”, J. AM. CHEM. SOC. (2005), 127, 3928-3934
Hirakawa, Tsutomu and Kamat, Prashant V, “Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters”, Langmuir (2004), 20, 14.
Hiroyuki, O.; Fred, H.; Chien, M. W.,” Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion”, Chem. Mater. (2001), 13, 4130-4135.
Hoffmann, M. R.; Martin, S. T.; Choi, W. and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev. (1995), 95, 69-96.
Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C. and Herrmann, J. M., “Photocatalytic degradation pathyway of methylene blue in water”, Appl. Catal., B-Environ. (2001), 31, 145-157.
Huang, D.; Liao, S.; Liu, J. M.; Dang, Z. and Petrik, L., “Preparation of visible-light responsive N-F-codoped TiO2 photocatalyst by a sol-gel-solvothermal method”, J. Photochem. Photobiol. A (2006), 184, 3, 282-288.
Hwang, J. S.; Yang, Z. P.; Dai, S. B.; Tyan, S. L.; Kou, M. T. and Lin, C. L., “Diffusion Analysis of Gelatin Solutions by Photocorrelation Spectroscopy”, Chinese Journal of Physics (1998), 36, 5.
Jacak, W.; Krasnyj, J.; Jacak, J.; Chepok, A.; Jacak, L.; Donderowicz, W.; Hu, D. Z. and Schaadt, D. M., “Undamped collective surface plasmon oscillations along metallic nanosphere chains”, J. Appl. Phys. (2010), 108, 084304.
Jamalluddin, N. A. and Abdullah, A. Z., “Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature”, Ultrasonics Sonochemistry (2011), 18, 669–678
Jia, H.; Xu, H.; Hu, Y.; Tang, Y. and Zhang, L., “TiO2@CdS core–shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties”, Electrochemistry Communications (2007), 9, 354-360.
Lakshmi, S.; Renganathan, R. and Fujita, S., “ Study on TiO2-mediated photocatalytic degradation of methylene blue”, J. Photochem. Photobiol. A (1995), 88, 163-167.
Linsebigler, A. L., Lu, G., Yates J. T. and Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms and Selected Results”, Chem. Rev. (1995), 95, 735-758.
Lukman, A. I.; Gong, B.; Marjo, C. E.; Roessner, U.; Harris, A. T., “Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates”, Journal of Colloid and Interface Science (2011), 353, 433-444.
Kang, M.,” Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol”, J. Mol. Catal. A: Chem. (2003), 97, 173-183.
Kavan, L.;O’Regan, B.; Kay, A.; Gra˙˙tzel, M.,” Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3”, J. Electroanal. Chem. (1993), 346, 291-307.
Karvinen, S.; Hirva, P. and Pakkanen, T. A., “Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2”, J. Mol. Struct-Theochem (2003), 626, 271-277.
Karunakaran, C.; Abiramasundari, G., Gomathisankar, P., Manikandan, G. and Anandi, V., “Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under
visible light”, Journal of Colloid and Interface Science (2010), 352, 68-74.
Kim, C. S.; Moon, B. K.; Park, J. H. and Son, S. M.,” Solvotherinal synthesis of nanocrystalline TiO2 in toluene with surfactant”, J. Cryst. Growth (2003), 254,
405-410.
Kim, M. J.; Kim, K. D.; Seo, H. O.; Luo, Y.; Dey, N. K. and Kim, Y. D., “Improvement in the photocatalytic activity of TiO2 by the partial oxidation ofthe C impurities”, Applied Surface Science (2011), 257, 2489-2493.
Kim, S. B. and Hong, S. C., “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst”, Appl. Catal. B: Environ. (2002), 35, 305-315.
Kolen’ko, Y. V.; Burukhin, A. A.; Churagulov, B. R. and Oleynikov, N. N.,” Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions”, Mater. Lett. (2003), 57, 1124-1129.
Kraeutler, B. and Bard A. J.,” Heterogeneous photocatalytic preparation of supported catalysts—photodeposition of platinum on TiO2 powder and other substrates” J Am Chem Soc (1978), 100, 4317-4318
Kryukova, G. N.; Zenkovets, G. A.; Shutilov, A. A.; Wilde, M.; Gunther, K.; Fassler, D.; Richter, K.,” Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 Dye upon ultraviolet light”, Applied Catalysis B: Environmental (2007), 71, 169–176
Kuo, C.Y.; Wu, C.H.; Lin, H.Y., ”Photocatalytic degradation of bisphenol A in a visible light/TiO2 system”, Desalination (2010), 256, 37-42
Li, F. B. and Li, X. Z., “Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment”, Appl. Catal. A (2002), 228, 15-27.
Li, F. B. and Li, X. Z., ” The enhancement of photodegradation efficiency using Pt–TiO2 catalyst”, Chemosphere (2002), 48, 1103-1111.
Li, X. Z.; Li, F. B.; Yang, C. L. and Ge, W. K., “Photocatalytic activity of WOx-TiO2 under visible light irradiation”, J. Photochem. Photobiol A (2001), 141, 209-217.
Lin, Y. C. and Lin, C. H., “Catalytic and PhotocatalyticDegradation of Ozone via Utilization of ControllableNano-Ag Modified on TiO2”, Environmental Progress (2008), 27, 4, 496-502.
Ma, J.; Xiong, Z.; T., D. W.; Ng, W. J.; Zhao, X.S., ” Enhanced Inactivation of Bacteria with Silver-Modified Mesoporous TiO2 under Weak Ultraviolet Irradiation”,
Microporous and Mesoporous Materials (2011)
Ma, Y.; Fu, J. W.; Tao, X.; Li, X. and Chen, J. F., “Low temperature synthesis of iodine-doped TiO2 nanocrystallites with enhanced visible-induced photocatalytic activity”, Applied Surface Science (2011), 257, 5046-5051.
Mamun, A. A., Kusumoto, T., Zannat, S., Islam, S., ”Synergistic cell-killing by photocatalytic and plasmonic photothermal effects of Ag@TiO2 core–shell composite nanoclusters against human epithelial carcinoma (HeLa) cells”, Applied Catalysis A, General (2010).
Matsumoto, Y.; Ishikawa, Y.; Nishida, M. and Ii, S., “A New Electrochemical Method To Prepare Mesoporous Titanium(IV) Oxide Photocatalyst Fixed on alumite substrate ”, J. Phys. Chem. B (2000), 104, 4204-4209.
Moon, S. Y.; Sekino, T.; Kusunose, T. and Tanaka, S. I., “Simple one-step synthesis of water and organic media soluble gold nanoparticles with various shapes and sizes”, Journal of Crystal Growth (2009), 311, 651-656.
Moulder, J. F.; Stickle, W. F., Sobol, P. E.and Bomben, K. E.,”Handbook of X-ray Photoelectron spectroscopy”, Physical Electronics (1995).
Murakami, N.; Kamai, T. A.; Tsubota, T. and Ohno, T., “Novel hydrothermal preparation of pure brookite-type titanium(IV) oxide nanocrystal under strong acidic conditions”, Catalysis Communications (2009), 10, 963-966.
Nagaveni, K.; Sivalingam, G.; Hegde, M. S.; Madras, G.,” Solar photocatalytic degradation of dyes high activity of combustion synthesized nano TiO2”, Applied Catalysis B: Environmental (2004), 48, 83-93.
Natarajan, C.and Nogami, G.;” Cathodic Electrodeposition of Nanocrystalline Titanium Dioxide Thin Films”, J. Electronchem. Soc. (1996), 143, 1547-1550.
Pedraza, F. and Vasquez, A., “Obtention of TiO2 rutile at room temperature through direct Oxidation of TiCl3”, J. Phys. Chem. Solids (1999), 60, 445-448.
Peng, Y. H.; Huang, G. F. and Huang, W. Q., “Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films”, Advanced Powder Technology (2010).
Pillai, V.; Kumar, P., Huo, M. J.; Ayyub, P.; Shah, D. O., “Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors”, Adv. Colloid. Interface. Sci. (1995), 55, 241-269.
Ponznyak, S. K.; Kokorin, A. I. and Kulak, A. I.,“Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes”, J. Electroanal. Chem. (1998), 442, 99-105.
Rauf, M. A. and Ashraf, S. S., ” Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution”, Chem. Eng. J. (2009), 151, 10-18.
Rengaraj, S.and Li, X. Z.,” Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension”, Journal of Molecular Catalysis A: Chemical (2006), 243, 60–67
Rhoderick, E. H. and Williams, R. H., “Metal-Semiconductor Contacts”, 2nd ed”, Oxford University Press: New York, 1988, p11.
Sakai, H.; Kanda, T.; Shibata, H.; Ohkubo, T. and Abe, M., “Preparation of Highly Dispersed Core/Shell-type Titania Nanocapsules Containing a Single Ag nanoparticle”, J. Am. Chem. Soc. (2006), 128, 4944-4945.
Senthilnathan, J. and Philip, L., “Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2”, Chemical Engineering Journal (2010), 161, 83-92.
Siefert, R. L.; Pehkonen, S. O.; Erel, Y.; Hoffmann, M. R., “Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids”, Geochim. Cosmochim. Acta. (1994), 58, 3271-3279.
Sivaligam, G.; Nagaveni, K.; Hegde, M. S.; Madras, G., “Photocatalytic degradation of various dyes by combustionsynthesized nano anatase TiO2”, Applied Catalysis B: Environmental (2003), 45, 23-28.
Sokmen, M. and Ozkan, A., “Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis”, J. Phtotchem. Photobiol. A (2002), 147, 77-81.
Sonawane, R. S.; Kale, B. B. and Dongare, M. K.,” Preparation and photo-catalytic activity of Fe–TiO2 thinfilms prepared by sol–gel dip coating”, Mater. Chem. Phys.(2004), 85, 52-57.
Sonawane, R. S.; Hegde, S. G., Dongare, M. K., “Preparation of titanium(IV) oxide thin film photocatalystby sol–gel dip coating”, Mater. Chem. Phys. (2002), 77, 744-750.
Taleb, A.; Petit, C. and Pileni, M. P., “Synthesis of Highly Monodisperse Silver Nanoparticles From AOT Reverse Micelles: A way to 2D and 3D Self-Organization”, Chem. Mater. (1997), 9, 950-959.
Tian, H.; Ma, J.; Li, K. and Li, J., “Hydrothermal synthesis of S-doped TiO2 nanoparticles and theirphotocatalytic ability for degradation of methyl orange”, Ceramics International (2009), 35, 1289-1292.
Tom, R. T.; Nair, A. S.; Singh, N.; Aslam, M.; Nagendra, C. L.; Philip, R., Vijayamohanan, K. and Pradeep, T.,” Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, andAg@ZrO2 Core-Shell Nanoparticles: One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties”, Langmuir (2003), 19, 3439-3445.
Tryba, B., “Increase of the Photocatalytic Activity of TiO2 by Carbon and Iron Modifications”, Int. J. Photoenergy (2008).
Vamathevan, V.; Tse, H.; Amal, R.; Low, G. and McEvoy, S., ” Effects of Fe3+ and Ag+ ions on the photocatalytic degradation of sucrose in water”, Catal. Today (2001), 68, 201-208.
Wang, C. Y.; Liu, C. Y.; Zheng, X.; Chen, J. and Shen, T.,” The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2 particles ”, Colloids Surfaces A: Physicochem. And Eng. Aspects (1998), 131, 271-280.
Wang, G.,” Hydrothermal synthesis and photocatalytic activity of nanocrystalline TiO2 powders in ethanol–water mixed solutions”, J. Mol. Catal. A: Chem. (2007), 274, 185-191.
Wang, R. C.; Fan K. S. and Chang, J. S, “Removal of acid dye by ZnFe2O4/TiO2 -immobilized granular activated carbon under visible light irradiation in a recycle liquid–solid fluidized bed”, Journal of the Taiwan Institute of Chemical Engineers (2009), 40, 533–540.
Wang, W.; Zhang, J.; Chen, F.; He, D.; Anpo, M., “Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core-shell nanoparticles”, Journal of Colloid and Interface Science (2008), 323, 182-186.
Wantala, K.; Laokiat, L.; Khemthong, P.; Grisdanurak, N and Fukaya, K., “Calcination temperature effect on solvothermal Fe–TiO2 and its performance under visible light irradiation”, Journal of the Taiwan Institute of Chemical Engineers (2010), 41, 612-616.
Wu, S. H. and Chen, D. H., “Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions”, Journal of Colloid and Interface Science (2004), 273, 165-169.
Xin, B.; Wang, P.; Ding, D.; Liu, J.; Ren, Z.; Fu, H.,” Effect of surface species on Cu-TiO2 photocatalytic activity”, Applied Surface Science (2008), 254, 2569–2574
Xu, N.; Shi, Z.; Fan, Y.; Dong, J.;Shi, J. and Hu, M. Z.-C., “Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions”, Ind. Eng. Chem. Res. (1999), 38, 373-379.
Yao, K. S.; Wang, D. Y.; Ho, W. Y.; Yan, J. J. and Tzeng, K. C.,”Photocatalytic bactericidal effect of TiO2 thin film on plant pathogens”, Surface & Coatings Technology (2007), 201, 6886–6888.
Yang, D. J.; Park, H.; Kim, H. G.; Cho, S. and Choi, W. Y.,” Fabrication of a patterned TiO2 nanotube arraysin anodic oxidation, J. Electroceram. (2009), 23, 159-163.
Yang, S. W. and Gao, L., “Fabrication and shape-evolution of nanostructured TiO2 via asol–solvothermal process based on benzene–water interfaces”, Mater. Chem. Phys. (2006), 99, 437.
Yildiz, A.; Lisesivdin, S. B.; Kasap, M.; Mardare, D., “Non-adiabatic small polaron hopping conduction in Nb-doped TiO2 thin film”, Physica B (2009), 404, 1423-1426.
Yin, S.; Fujishiro, Y.; Wu, J.; Aki, M. and Sato, T., “Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions”, J. Master. Proc. Tech. (2003), 137, 45-48.
You, X.; Chen, F.; Zhang, J. and Anpo, M., “A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide”, Catalysis Letters (2005), 102, 3-4.
Yu, J. G.; Zhao, X. J. and Zhao, Q. N.,“Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method”, Thin Solid Film (2000), 379, 7-14.
Yu, J.; Xiong, J.; Cheng, B. and Liu, S., “Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity.”, Applied Catalysis B: Environmental (2005), 60, 211-221.
Zielinska, A.; Kowalska, E.; Sobczak, J. W.; Lacka, I.; Gazda, M.; Ohtani, B.; Hupka, J. and Zaleska, A., “Silver-doped TiO2 prepared by microemulsion method Surface properties,bio- and photoactivity”, Separation and Purification Technology (2010) , 72, 309–318.
Zielinska-Jurek, A.; Kowalska, E.; Sobczak, J. W.; Lisowski, W.; Ohtani, B. and Zaleska, A., “Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au)modified-titania photocatalysts activated by visible light”, Applied Catalysis B: Environmental (2011), 101, 504-514.
Zhang, D.; Song, X.; Zhang, R.; Zhang M.; Liu, F.,” Preparation and Characterization of Ag@TiO2 Core-Shell Nanoparticles in Water-in-Oil Emulsions”, Eur. J. Inorg. Chem. (2005), 1643-1648.
Zhang, F.; Guan, N.; Li, Y.; Zhang, X.; Chen, J. and Zeng, H., ” Control of Morphology of Silver Clusters Coated on Titanium Dioxide during Photocatalysis”, Langmuir (2003), 19, 8230-8234.
Zhang, F.; Jin, R.; Chen, J.; Shao, C.; Gao, W.; Li, L. and Guan, N., “High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters”, Journal of Catalysis (2005), 233, 424-431.
Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C., “Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2”, Angew. Chem. Int. Ed. (2008), 47, 1766-1769.
Zhang, L.; Kanki, T.; Sano, N. and Toyoda, A.,” Development of TiO2 photocatalyst reaction for water purification”, Separation and Purification Technology (2003), 31, 105-110.
Zhang, R.and Gao, L.,” Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles”, Mater. Res. Bull (2002), 37, 1659-1666.
Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J. and Serpone, N., “Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation”, J. Photochem. Photobiol. A (2001), 140, 163-172.
Zhang, Z.; Shao, C.; Zhang, L.; Li, X. and Liu, Y.,” Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity”, Journal of Colloid and Interface Science (2010), 351, 57-62.
Zhao, X. F.; Meng, X. F.; Zhang, Z. H.; Liu, L. and Jia, D. Z., “Preparation and photocatalytic activity of Pd-doped TiO2 thin films”, J. Inorg. Mater. (2004), 19, 140-146.
Zhitomirsky, I.,” Cathodic electrosynthesis of titanium and ruthenium oxides”, Mater. Lett. (1998), 33, 305-310.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2011-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明