博碩士論文 983204015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.235.30.155
姓名 王唯真(Wei-Chen Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
(The study of solubility parameter calculations and measurements for the optimization of peptide purification by HPLC)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為
★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢★ 矽奈米線場效電晶體多點之核酸檢測研究
★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究
★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究
★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性
★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究★ 三團聯共聚物及鎂離子對微脂粒物理穩定性之影響及其機制探討
★ 微卡計在固液吸附機制的研究-嵌印高分子及離子交換樹脂在近等電點時的吸附機制★ 微卡計於液膜交互作用力量測之應用----微脂粒系統穩定度之探討
★ Ribonuclease A 於逆微胞系統中的復性及其界面現象之研究★ 三團聯聚合物(PF-127)和磷脂質間交互作用力量測和微脂粒穩定度之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著生物技術和遺傳工程領域的迅速發展,人們對於胜肽(peptide)藥物之合成與發展,更有精確的掌握,也成為各醫藥公司於先導化合物(lead compound)及新藥研發的重要方向之一,更是原料藥廠積極投入生產之項目。胜肽藥物在製藥業中是一個逐年成長的領域,預計至2013年可達到115億歐元的價值[1]。
固相胜肽合成法(solid-phase peptide synthesis,SPPS)成功,更加推動了胜肽藥物的發展。然而,在SPPS的化學合成過程中,可能由於消旋反應(racemization)、合成中的胺基酸缺少(deletion)或插入(insertion),而產生不純物,及此不純物與欲合成之產品在物理及化學性質上的相近,也增加後續純化的困難。這也是整個利用SPPS生產之過程中最困難解決及整個生產程序中固定投資成本,操作成本最多的程序。
因此,考慮了現行純化過程中,仍以管柱層析之操作為主,及為了可以達到生產操作成本之降低及最佳化之純化,本研究根據溶解度參數(solubility parameter,δ)理論與管柱層析之應用,針對胜肽藥物之純化做探討,並藉由實驗與理論計算確立之溶解度參數值對於胜肽於管柱中的滯留行為做有效地描述與控制。此理論原則之建立將可於面對不同胜肽藥物之合成與純化需求時,能更有原則性的建立生產程序,減低嘗試錯誤之需求等多重目的。
論文主要分為三個部份:第一部分為層析系統中分析物(胜肽)、移動相(沖提液)及固定相(管柱)之溶解度參數值的決定。並藉由層析實驗對於管柱及胜肽溶解度參數值做相互的驗證;第二部份則著重於層析移動相的選擇,當原本做為移動相的雙成分溶劑,無法達到分離標準時,本研究進一步根據相同溶解度參數即有相同沖提強度的觀念,對於移動相雙成份或三成份組成以及比例之選擇做較好的推測,進而達到最佳化的分離。第三部份,本研究也針對胜肽鏡像異構物的分離,以分子間溶解度參數差值(△δ)越小,即相溶性越好的觀念,及配合了分子模擬計算,有效地分離產物與其鏡像異構物。
摘要(英) With the rapid development of biotechnology and genetic engineering over this decade, peptide drug synthesis has precisely controlled to become an important direction for searching and developing of lead compounds in pharmaceutical companies. The market capitalization of peptide drugs was estimated about ?11.5 billion until 2013. The solid-phase peptide synthesis (SPPS) gave a strong impetus to the therapeutic peptide field. However, the peptide purification process usually dominated the overall cost. Also, the synthetic peptides often contained impurities due to amino acid deletion or insertions; in particular, enantiomeric impurities arising from racemization during peptide synthesis. The almost similar physical and chemical properties between impurity and desired peptides were the major problems for peptide separation. Therefore, the optimization of peptide purification process was to be an important course for minimizing the cost. In this study, the solubility parameter (δ) theory was utilized to build up an optimization strategy for peptide purification by HPLC. Under the experimental and theoretical methods, we hope to predict and descript the retention behaviors of peptide in column. This thesis is divided into three parts: First, to determine the solubility parameter of analyte (peptide), mobile phase (solvent) and stationary phase (column) in HPLC system; then, to find the proper ranging of mobile phase and composition; finally, to combine the solubility parameter calculation and molecular dynamics simulation for isomer separation. The results revealed that the isomers could be separated by transferring from one binary mobile phase to an iso-eluotropic (the same eluotropic strength) binary mixture arisen from different solubility parameter, and owned a good enantiomer separation.
關鍵字(中) ★ 胜肽純化
★ 溶解度參數
★ 管柱層析
關鍵字(英) ★ isomer separation
★ chromatography
★ peptide purification
★ solubility parameter
論文目次 中文摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xvii
符號說明 xix
第一章 緒論 1
第二章 文獻回顧 3
2.1 胜肽之合成 3
2.1-1 液相胜肽合成法(solution-phase peptide synthesis) 4
2.1-2 固相胜肽合成法(solid-phase peptide synthesis) 4
2.1-3 保護基(protecting group)的使用 6
2.2 不純物的生成 9
2.3 管柱層析(chromatography)簡介 10
2.3-1 分子大小排斥層析 11
2.3-2 疏水交互作用層析 12
2.3-3 逆相層析 14
2.3-4 正相層析 15
2.4 層析參數計算 16
2.5 胜肽於高效能液相層析中的分離與純化 19
2.6 影響胜肽於層析滯留性之因素 24
2.6 -1 溫度 24
2.6 -2 不同的有機修飾劑(organic modifier) 27
2.6 -3 不同的移動相添加劑(mobile phase additives) 29
2.6 -4 沖提程序(elution program)改變 33
2.7 溶解度參數(solubility parameter) 理論 35
2.7-1 分散力(dispersion force) 40
2.7-2 偶極力(dipolar intermolecular force) 41
2.7-3 氫鍵作用力(hydrogen bonding) 42
2.7-4 溶解度參數的假設及限制 43
2.8 管柱溶解度參數(solubility parameter) 計算 44
2.8-1等溫吸附曲線之數學模式 44
2.8-2 平衡常數與溶解度參數之關係 46
2.9 溶解度參數應用於層析移動相之選擇 49
2.9-1 The Regular Mixing Rule 49
2.9-2 容積因子與溶解度參數之關係式 50
2.9-3 層析移動相之選擇 51
2.9-4 層析移動相(binary,ternary)之最佳化選擇 54
第三章 實驗藥品、儀器設備與實驗方法 63
3.1 實驗藥品 63
3.1-1 層析用溶劑及藥品 63
3.1-2 胜肽鏈 64
3.2 儀器設備 65
3.2-1 一般設備 65
3.2-2 高效能液相層析儀 66
3.3 實驗步驟與分析 67
3.3-1 管柱基材之溶解度參數測定 67
3.3-2 胜肽之溶解度參數測定 75
第四章 結果與討論 81
4.1 以層析法求得管柱填充基材之溶解度參數 81
4.2 以層析法與Hoy software求得胜肽之溶解度參數 87
4.3 溶解度參數﹙δd、δp、δh﹚對胜肽純化分離之影響 100
4.4 胜肽鏡像異構物之純化分離 108
第五章 結論 119
第六章 參考文獻 120
附錄 130
參考文獻 1. Vlieghe, P., Lisowski, V., Martinez, J.,Khrestchatisky, M., Synthetic therapeutic peptides: science and market. Drug Discovery Today 2010,15 (1-2), 40-56.
2. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85(14), 2149–2154.
3. Hildebrand, J. H., The solubility of nonelectrolytes,2nd ed.. Reinhold: 1936.
4. Hansen , C. M., Beerbower. A., Kirk-Othmer encyclopedia of chemical technology, 2nd ed.. Wiley., NewYork.: 1971.
5. Banga, A. K., Therapeutic peptides and proteins; formulation, processing, and delivery systems, 2nd ed.. CRC Press, ISBN:0-8493-1630-8: 2006.
6. 陳淑玲. "固相胜肽合成DOTA-Tyr-Octreotide",碩士論文 ,中原大學. 中原大學, 2004.
7. 謝忠益. "N-acetyl-leucyl-leucyl-norleucinal衍生物合成之研究", 碩士論文, 國立成功大學. 2002.
8. Carpino, L. A., Han, G.Y . , 9-Fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem. 1972,37(22), 3404–3409.
9. Rich, D. H., Gurwara,S. K. , Preparation of a new o-nitrobenzyl resin for solid-phase synthesis of tert-butyloxycarbonyl-protected peptide acids. J. Am. Chem. Soc. 1974,97(6), 1575-1579.
10. Carpino, L. A., Mansour, E. M. E.,Sadataalaee, D., Tert-butyloxycarbonyl and benzyloxycarbonyl amino-acid fluorides - New, stable rapid-acting acylating agents for peptide-synthesis. J. Org. Chem. 1991,56(8), 2611-2614.
11. Geiger, T., Clark,S., Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. J. Biol. Chem. 1987,262(2), 785-794.
12. Souza, M. P., Tavares, M. F. M.,Miranda, M. T. M., Racemization in stepwise solid-phase peptide synthesis at elevated temperatures. Tetrahedron 2004,60(21), 4671-4681.
13. Tswett, M. S., Khromofilly v rastitel’ nom i zhivotnom mire(Chromophylls in the plant and animal kingdom). Karbasnikov Publishers, Warsaw.: 1910.
14. Sakodynskii, K., Chmutov,K., M. S. Tswett and chromatography. Chromatographia 1972,5(8), 471-476.
15. Ettre, L. S., M.S.Tswett and the invention of chromatography. LCGC Europe 2003.
16. 林健成. "蛋白質與疏水性基材間交互作用的溫度效應及其吸附機制探討",碩士論文 ,國立中央大學. 2001.
17. Hjertén, S., Some general aspects of hydrophobic interaction Chromatography. J. Chromatogr. 1973, 87, 325-331.
18. Porath, J., Sundberg, L., Fornstedt, N., Olson, I. , Salting-out in amphiphilic gels as a new approach to hydrophobic adsorption. Nature 1973,245, 465-466.
19. Queiroz, J. A., Tomaz, C. T.,Cabral, J. M. S., Hydrophobic interaction chromatography of proteins. J Biotechnol. 2001,87(2), 143-159.
20. 方瓊儀. "利用微卡計對於蛋白質與離子交換樹脂觸手間親疏水作用力的研究",碩士論文 ,國立中央大學. 2002.
21. Meyer, V. R., Practical high-performance liquid chromatography, 5th ed.. John Wiley and Sons, ISBN:0470682183, 9780470682180: 2010.
22. O'Gara, J. E., Alden, B. A.,Gendreau, C. A.,Iraneta, P. C.,Walter, T. H., Dependence of cyano bonded phase hydrolytic stability on ligand structure and solution pH. J. Chromatogr. A 2000,893(2), 245-251.
23. Eleanor, C. D., Ida,P. B., Glen M. T., Characterization of chemically synthesized human relaxin by high-performance liquid chromatography. J. Chromatogr. A 1990,508, 81-96.
24. Lindsay, S., Acol,J. B., High performance liquid chromatography. John Wiley and Sons, ISBN:0471931152, 9780471931157: 1992.
25. Dorsey, J. G., Dill, K.A. , The molecular mechanism of retention in reversed-phase liquid chromatography. Chem. Rev. 1989, 89(2), 331-346.
26. Skoog, D. A., Holler, F. J., Nieman, T.A., Principles of instrumental analysis,5th ed.. Thomson Learning: 1998.
27. Alias, M., Lopez, M. P.,Cativiela, C., An efficient and stereodivergent synthesis of threo- and erythro-beta-methylphenylalanine. Resolution of each racemic pair by semipreparative HPLC. Tetrahedron 2004,60(4), 885-891.
28. Gordon, A. H., Martin, A. J. P. , Synge, R. L. M. , Partition chromatography in the study of protein constituents. Biochem. J. 1943,37(1), 79-86.
29. 劉人豪. "應用紫外光-可見光光譜儀探討Anti-NTx抗體與合成之線狀與環狀胜肽的交互作用",碩士論文,東海大學. 2006.
30. Clark, T. D., Sastry, M.,Brown, C.,Wagner, G., Solid-phase synthesis of backbone-cyclized beta-helical peptides. Tetrahedron 2006,62(41), 9533-9540.
31. Nogueira, R., Lammerhofer, M.,Lindner, W., Alternative high-performance liquid chromatographic peptide separation and purification concept using a new mixed-mode reversed-phase/weak anion-exchange type stationary phase. J. Chromatogr. A 2005,1089(1-2), 158-169.
32. 劉至一. "短鏈胜肽疏水性之探討" , 博士論文 , 中原大學. 2006.
33. Bidlingmeyer, B. A., Henderson, J., Investigation of retention on bare silica using reversed-phase mobile phases at elevated temperatures. J. Chromatogr. A 2004,1060(1-2), 187-193.
34. Sajonz, P., Natishan, T. K.,Antia, F. D.,Frenette, R., Optimization of the preparative separation of a chiral pharmaceutical intermediate by high performance liquid chromatography. J. Chromatogr. A 2005,1089(1-2), 135-141.
35. Flynn, J. H., Thermal analysis kinetics - past, present and future. Thermochim. Acta 1992,203, 519-526.
36. Bounine, J. P., Guiochon, G. ,Colin, H. , A simple pragmatic optimization procedurer for some parameters involved in high-performance liquisd chromatographic matographic separations: column design, temperature, solvent flow-rate and composition. J. Chromatogr. A 1984,298, 1-20.
37. Vervoort, R. J. M., Ruyter, E.,Debets, A. J. J.,Claessens, H. A.,Cramers, C. A.,Jong,G. J. de Characterisation of reversed-phase stationary phases for the liquid chromatographic analysis of basic pharmaceuticals by thermodynamic data. J. Chromatogr. A 2002,964(1-2), 67-76.
38. Yang, M.; Fazio, S.; Munch, D.; Drumm, P., Impact of methanol and acetonitrile on separations based on pi-pi interactions with a reversed-phase phenyl column. J. Chromatogr. A 2005,1097(1-2), 124-129.
39. Kagan, M., Chlenov, M.,Melnikov, S.,Greenfield, A.,Gross, J.,Bernotas, R. C., Optimization of normal-phase chromatographic separation of compounds with primary, secondary and tertiary amino groups. J. Chromatogr. A 2008,1194(1), 80-89.
40. Yoshida, T., Peptide separation in normal phase liquid chromatography. Anal. Chem. 1997,69(15), 3038-3043.
41. Zhu, B. Y., Mant, C. T.,Hodges, R. S., Mixed-mode hydrophilic and ionic interaction chromatography rivals reversed-phase liquid-chromatography for the separation of peptides. J. Chromatogr. 1992,594(1-2), 75-86.
42. Yoshida, T., Okada, T., Peptide separation in normal-phase liquid chromatography - Study of selectivity and mobile phase effects on various columns. J. Chromatogr. A 1999,840(1), 1-9.
43. Lloyd R. Snyder, J. W. D., High-performance gradient elution: the practical application of the linear-solvent-strength model. John Wiley and Sons, ISBN :0471706469, 9780471706465: 2007.
44. Stefanis, E., Panayiotou, C., Prediction of Hansen solubility parameters with a new group-contribution method. Int. J. Thermophys. 2008,29(2), 568-585.
45. Barton, A. F. M., Handbook of solubility parameters and other cohesion parameters. CRC Press, Boca Raton, Florida: 1983.
46. Barton, A. F. M., CRC handbook of solubility parameters and other cohesion parameters ,2nd. ed..CRC Press, ISBN:0849301769, 9780849301766: 1991.
47. Hansen, C. M., The Three dimensional solubility parameter and solvent diffusion coefficient, their importance in surface coating formulation. Danish Technical Press: 1967.
48. Hansen, C. M., Hansen solubility parameters: a user's handbook, 2d ed.. CRC Press.28-30. ISBN: 0849372488: 2007.
49. Hansen, C. M., 50 Years with solubility parameters - past and future. Prog. Org. Coat. 2004,51(1), 77-84.
50. Redelius, P., Bitumen solubility model using Hansen solubility parameter. Energ Fuel 2004,18(4), 1087-1092.
51. Van Der Waals, J. D., Over de continue¨ıteit van den gas- en vloeistoftoestand thesis. Leiden: 1873.
52. London, F., Eisenschitz,R. , London force. Zeitschrift für Physik 1930,60, 491.
53. Pauling, L., The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press: 1989.
54. Hettema, H., Quantum chemistry: classic scientific papers. World Scientific, ISBN :981022771X, 9789810227715: 2000.
55. Ege, S. N., Organic chemistry: structure and reactivity ,5th ed.. Houghton Mifflin Harcourt.: 2003.
56. McQuarrie, D. A., Simon,J. D., Physical chemistry a molecular approach ,1st ed.. University Science Books , ISBN :0935702997, 9780935702996: 1997.
57. Jeffrey, G. A., An introduction to hydrogen bonding. Oxford University Press, USA.: 1997.
58. Crabtree, R. H., Siegbahn, P. E. M.,Eisenstein, O.,Rheingold, A. L., A new intermolecular interaction: Unconventional hydrogen bonds with element-hydride bonds as proton acceptor. Acc. Chem. Res. 1996,29(7), 348-354.
59. Schoenmakers, P. J., Billiet,H. A. H. ,Galan, L. de, The solubility parameter as a tool in understanding liquid chromatography. Chromatographia 1982, 15(3), 205-214.
60. Barry L. Karger, L. R. S., Claude Eon, An expanded solubility parameter treatment for classification and use of chromatographic solvents and adsorbents : Parameters for dispersion, dipole and hydrogen bonding interactions. J. Chromatogr. A 1976,125(1), 71-81.
61. 劉保國. "胜肽設計當成親和性管柱層析觸手以純化胜肽或蛋白質之研究",碩士論文 ,國立中央大學. 1993.
62. Zhang, S. P., Sun, Y., Ionic strength dependence of protein adsorption to dye-ligand adsorbents. AIChE J. 2002,48(1), 178-186.
63. Finette, G. M. S., Mao, Q. M.,Hearn, M. T. W., Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilised metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions. J.Chromatogr. A 1997, 763(1-2), 71-90.
64. Smith, J. M., Van Ness, H.C. , Abbott,M.M. , Introduction to chemical engineering thermodynamics. McGraw-Hill. ISBN: 007059239X 1996.
65. Kondepudi, D. K., Introduction to modern thermodynamics. John Wiley and Sons. ISBN: 0470015985: 2008.
66. Mortimer, R. G., Physical chemistry. Academic Press. ISBN: 0123706173 2008.
67. Georgios M. Kontogeorgis, G. K. F., Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories,. John Wiley and Sons.: 2009.
68. Schoenmakers, P. J., Drouen,A. C. J. H., Billiet,H. A. H. , Galan,L. de A simple procedure for the rapid optimization of reversed-phase separations with ternary mobile phase mixtures. Chromatographia 1982,15(11), 688-696.
69. Heinisch, S., Riviere, P.,Rocca, J. L., A computer routine for the selection and optimization of multisolvent mobile phase systems in reversed-phase liquid-chromatography. Chromatographia 1991,32(11-12), 559-565.
70. 黃啟仲, "Fundamentals in HPLC基礎理論" ,美商沃特斯國際(股)公司. 2008.
71. Blaschke, G., Chromatographic resolution of racemates. New analytical methods. Angew. Chem. Int. Ed. 1980, 19(1), 13-24.
72. Okamoto, Y., Yashima, E., Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 1998, 37(8), 1020-1043.
73. Tsai, C. W., Liu, C. I.,Chan, Y. C.,Tsai, H. G.,Ruaan, R. C., Study of conformation effects on the retention of small peptides in reversed-phase chromatography by thermodynamic analysis and molecular dynamics simulation. J. Phys. Chem. B 2010, 114(35), 11620-11627.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2011-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明