博碩士論文 983204022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.191.211.66
姓名 林俊甫(Chun-fu Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
(Fabrication of large-area ZnO:Al nanostructure arrays by electrodeposition and their properties)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究
★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究
★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究★ 新穎太陽能電池基板表面粗糙化結構之研究
★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用射頻磁控濺鍍系統沉積ZnO:Al透明導電薄膜做為晶種層,成功地以電鍍法成長出一系列長短寬度可調變之ZnO:Al 奈米柱陣列,並針對其晶體結構、表面形貌、光電性質及表面親疏水性質進行一系列的深入觀察與分析,並找出成長大面積ZnO:Al 奈米柱陣列之最佳製程參數。本研究也首度結合奈米球微影技術與電鍍製程,成功地在ZnO:Al透明導電薄膜的表面製備出大面積且尺度大小可調變碗形-蜂巢狀規則有序之ZnO:Al新穎雙奈米結構。而此種新穎ZnO:Al奈米結構陣列在400 nm - 800 nm 波長之穿透率皆可>80%,且在可見光波長範圍最高平均霧度可達27.6%,遠大於平整ZnO:Al薄膜之平均霧度 ( 約0.56 % ) ,在光捕捉效率提昇上效果十分顯著。此相關實驗結果,相信將可提供未來在太陽能光電元件製程開發及設計時之參考。
摘要(英) In this study, ZnO:Al ( AZO ) transparent conducting oxide thin films were deposited on glass by a RF sputtering system to serve as the seed layer for the electrodeposition of AZO nanorods. Large-area AZO nanorod arrays were prepared in the optimal electrodeposition conditions. The microstructue, surface morphology, and physical properties of the AZO nanorods have been investigated. Furthermore, bowl-like AZO nanorod structures were successfully fabricated on AZO films by using nanosphere lithography combined with the electrodeposition technique. The size and periodicity of bowl-like AZO nanorodstructures can be controlled by turning the diameter of nanosphere and the electrodeposition conditions. In the optimum conditions, the total transmittance of the bowl-like AZO nanorods sample was higher than 80 % in the wavelength ranges of 400-800 nm. In addition, the obtained bowl-like AZO nanostructures were found to be very effective in light trapping. The average HAZE of the bowl-like AZO nanorods sample in the range of 400-800 nm is 27.6 %, which is higher than that of the AZO thin films samples ( ~0.56 %) . Since the size and periodicity of bowl-like AZO nanostructures can be readily controlled by turning the diameter of nanosphere and the electrodeposition conditions, the approach presented here can be used to fabricate a variety of AZO nanostructure arrays to enhance the light trapping effects.
關鍵字(中) ★ 氧化鋅
★ 電鍍
關鍵字(英) ★ AZO
★ ZnO
論文目次 目錄.....................................................Ⅰ
第一章 簡介與文獻回故....................................Ⅱ
1-1 前言..................................................1
1-2 太陽能電池............................................2
1-2-1 太陽能電池..........................................2
1-2-2 Ⅲ-Ⅴ族太陽能電池 ..................................3
1-2-3 染料敏化太陽能電池..................................3
1-2-4 矽晶太陽能電池......................................4
1-3 透明導電氧化物........................................5
1-3-1 透明導電薄膜........................................6
1-3-2 透明導電金屬氧化物薄膜導電機制......................6
1-3-3 氧化銦薄膜..........................................8
1-3-4 氧化錫薄膜..........................................8
1-3-5 氧化鋅薄膜..........................................8
1-3-6 氧化鋅摻雜鋁的影響.................................10
1-4 一維ZnO奈米線成長機制與製備方法......................11
1-4-1 氣-液-固成長奈米線機制........... .................12
1-4-2 氣-固成長奈米線機制................................12
1-4-3 氧化鋅摻雜鋁奈米線製備方法.........................13
1-4-4 電化學沉積AZO奈米線合成方法與理論基礎..............14
1-5 奈米球微影術.........................................15
1-5-1 微影術簡介.........................................15
1-5-2 奈米球自組裝技術...................................16
1-5-3 利用奈米球微影術製備規則排列類奈米結構.............16
1-6 研究動機與實驗目的...................................17
第二章實驗步驟...........................................19
2-1 實驗步驟.............................................19
2-1-1 實驗試片前處理.....................................19
2-1-2 濺鍍法製備ZnO:Al透明導電薄膜.......................19
2-1-3 電化學沉積溶液配製.................................20
2-1-4 電化學沉積法製備ZnO:Al奈米線.......................20
2-1-5 電化學沉積法結合奈米球微影術製備ZnO:Al雙奈米結構...21
2-2 實驗設備.............................................21
2-2-1 濺鍍系統...........................................21
2-2-2 電化學沉積設備.....................................22
2-2-3 真空退火系統.......................................22
2-2-4 高密度電漿蝕刻機...................................22
2-3 實驗分析設備.........................................23
2-3-1 四點探針...........................................23
2-3-2 紫外光-可見光光譜儀................................24
2-3-3 XRD 繞射分析.......................................24
2-3-4 原子力顯微鏡.......................................25
2-3-5 掃描式電子顯微鏡...................................25
2-3-6 穿透式電子顯微鏡...................................25
2-3-7 高分辨穿透式電子顯微鏡與能量散布光譜儀.............26
2-3-8 X-Ray 光電子能譜儀.................................26
2-3-9 影像式接觸角量測儀.................................27
2-3-10 電性分析儀........................................27
第三章 結果與討論........................................28
3-1 濺鍍法製備ZnO:Al透明導電薄膜晶種層與晶體結構鑑定.....28
3-1-1 濺鍍法製備ZnO:Al透明導電膜之表面分析與相鑑定.......28
3-1-2 ZnO:Al 透明導電薄膜真空熱處理前後特性分析..........29
3-2 電化學法沉積ZnO:Al奈米線之製備與晶體結構鑑定.........32
3-2-1 電流密度對於電化學沉積製備ZnO:Al奈米線之變化.......32
3-2-2 電鍍時間對於電化學法製備ZnO:Al奈米線之變化.........35
3-2-3 電化學沉積ZnO:Al奈米線機制與鑑定...................37
3-3 ZnO:Al奈米結構光暗電性I-V分析........................41
3-4 大面積規則排列ZnO:Al雙奈米結構之製備與分析...........42
3-4-1 ZnO:Al 透明導電薄膜基材上製備規則奈米球模板陣列....42
3-4-2 奈米球微影術結合電化學沉積製備ZnO:Al雙奈米結構及其特性分析...................................................43
3-4-3 二維ZnO:Al雙奈米結構之光學特性分析.................45
3-5 ZnO:Al奈米結構之表面性質探討.........................47
第四章 結論與未來展望....................................49
4-1 結論.................................................49
4-2 未來與展望...........................................51
4-2-1 太陽能電池前電極...................................51
4-2-2 ZnO:Al發光元件與氣體感測器.........................51
參考文獻.................................................52
表目錄...................................................62
圖目錄...................................................65
參考文獻 [1] H. Tsubomura and H. Kobayashi, “Solar Cells,” Crit. Rev. Solid State Mater. Sci. 18 (1993) 261-326.
[2] C. G. Granqvist, “Radiative Heating, and Cooling with Spectrally Selective Surfaces,” Appl. Opt. 20 (1981) 2606-2615.
[3] Jenney Nelson, “The physics of Solar Cells,” Imperial College Press, 2003.
[4] V. M. Andreev, V. A. Grikhiles, and V. D. Rumyanzev, “Photoelectric conversion of sun concentrated radiation,” Leningrand, Nauka, 1989.
[5] N. H. Karam, R. R. King, B. T. Cavicchi, D. D. Krut, J. H. Ermer, M. Haddad, L. Cai, D. E. Joslin, M. Takahashi, J. W. Eldredge, W. T. Nishikawa, D. R. Lillington, B. M. Keyes, and R. K. Ahrenkiel, “Development and Characterization of High-Efficiency Ga0.5In0.5P/GaAs/Ge Dual- and Triple-junction Solar cells,” IEEE Trans Elec. Devices 46 (1999) 2116-25.
[6] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353 (1991) 737-739.
[7] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “High-Efficiency Light-Harvesting Ruthenium Sensitizer for Thin Film Dye-Senitized Solar Cells, ”Acs nano 3 (2009) 3103-3109.
[8] B. Lim, S. Hermann, K. Bothe, J. Schmidt, and R. Brendel, “Solar Cells on Low-Resistivity Boron-Doped Czochralski-Grown Silicon with Stabilized Efficiencies of 20%,” Appl. Phys. Letter. 93 (2008) 162102~3
[9] U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative Study of Different Approaches of Multicrystalline Silicon Texturing for Solar Cell Fabrication,” Solar Energy Materials and Solar cells 91 (2007) 285-289.
[10] A. Gordijn, J. K. Rath, and R. E. I. Schropp, “High-Efficiency μc-Si Solar Cells Made by Very High-Frequency Plasma-Enhanced Chemical Vapor Deposition,” Prog. Photovoltaics Res. Appl. 14 (2006) 305-311.
[11] Schultz, S. W. Glunz, G. A. Leimenstoll, H. Lautenschlager, and J. C. Goldschmidt, in Proc. 19th Europ. Photovolt. Solar Energy Conf., in: W. Hoffmann, H. A. Ossenbrink, P. Helm, H. Ehmann (Eds.), Stephens and Accociates, Bedfore UK, in press.
[12] J. Woerdenweber, T. Merdzhanova, R. Schmitz, A. Mück, U. Zastrow, L. Niessen, A. Gordijn, R. Carius, W. Beyer, H. Stiebig, and U. Rau, “Influence of Base Pressure and Atmospheric Contaminants on a-Si:H Solar Cell Propertied,” J. Appl. Phys. 104 (2008) 094507-1~6.
[13] H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah, “Microcrystalline Silicon and Micromorph Tandem Solar Cells,” Appl. Phys. A 69 (1999) 169-177.
[14] R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light Trapping in Thin-Film Silicon Solar Cells with Submicron Surface Texture, ”Opt. Express 17 (2009) 23058-23065.
[15] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving Thin-Film Crystalline Silicon Solar Cell Efficiencies with Photonic Crystals,” Optics. Express 15 (2007) 16986-17000.
[16] K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M. Ichikawa, Y. Koi, M. Kondo, T. Sasaki, and Y. Tawada, “A High Efficiency Thin Film Silicon Solar Cell and Module,” Sol. Energy 77 (2004) 939-49.
[17] N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-Film Solar Cells with Periodic Grating Coupler,” Thin Solid Films 451-452 (2004) 397-401
[18] H. Zhu, J. Hüpkes, E. Bunte, J. Owen, and S.M. Huang, “Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells,” Solar Energy Materials & Solar Cells 95 (2011) 964-8.
[19] W. L. Lu, K. C. Huang, C. H. Yeh, C. I. Hung, and M. P. Houng, “Investigation of textured Al-doped ZnO thin films using chemical wet-etching methods.” Materials Chemistry and Physics 127 (2011) 358-63.
[20] K. Ip, M. E. Overberg, K. W. Baik, R. G. Wilson, S. O. Kucheyev, J. S. Williams, C. Jagadish, F. Ren, Y. W. Heo, D. P. Norton, J. M. Zavada, and S. J. Pearton, “ICP Dry Etching of ZnO and Effects of Hydrogen,” Solid State Electron. 47 (2003) 2289-2294.
[21] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode Dependence of The Open-Circuit Voltage of Polymer : Fullerene Bulk Heterojunction Solar Cells,” J. Appl. Phys. 94 (2003) 6849-6854.
[22] S. U. Lee, W. S. Choi, and B. Hong, “Synthesis and Characterization of SnO2:Sb Film by dc Magnetron Sputtering Method for Applications to Transparent Electrodes,” Phys. Scr. T129 (2007) 312-315.
[23] J. Lee, “Effects of Oxygen Concentration on the Properties of Sputtered SnO2:Sb Films Deposited at Low Temperature,” Thin Solid Films 516 (2008) 1386-1390.
[24] J. Ma, X. Hao, S. Huang, J. Huang, Y. Yang, and H. Ma, “Comparison of the Electrical and Optical Properties for SnO2:Sb Films Deposited on Polyimide and Glass Substrates,” Appl. Surf. Sci. 214 (2003) 208-213.
[25] Y. K. Moon, S. H. Kim, and J. W. Park, “The Influence of Substrate Temperature on the Properties of Aluminum-Doped Zinc Oxide Thin Films Deposited by DC Magnetron Sputtering,” J. Mater. Sci.: Mater. Electron 17 (2006) 973-977.
[26] Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, and B. H. Zhao, “Structural, Electrical, and Optical Properties of Transparent Conductive ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering,” J. Cryst. Growth 304 (2007) 64-68.
[27] M. Quaas, C. Eggs, and H. Wulff, “Structural studies of ITO thin films with the Rietveld method,” Thin Solid Films 332 (1998) 277-81.
[28] T. Sathiaraj, “Effect of Annealing on the Structural, Optical and Electrical Properties of ITO Films by RF Sputtering under Low Vacuum Level,” Microelectron. J. 39 (2008) 1444-1451
[29] K. K. Purushothman, M. Dhanashankar, and G. Muralidharan, “Preparation and Characterization of F doped SnO2 Films and Electrochromic Properties of FTO/NiO Films,” Curr. Appl Phys. 9 (2006) 67-72.
[30] Ü.Ö. Hadis Morkoç, “Zinc Oxide: Fundamentals, Materials and Device Technology,” Chapter 1, 2009, WILEY-VCH.
[31] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79 (1996) 7983-7990.
[32] V. A. Coleman and C. Jadadish, “Zinc oxide Bulk, Thin films and Nanostructures,” Elsevier, 2006
[33] W. J. Fan, J. B. Xia, P. A. Agus, S. T. Tan, S. F. Yu, and X. W. Sun, “Band Parameters and Electronic Structures of Wurtzite ZnO and ZnO/MgZnO Quantum Wells,” J. Appl. Phys. 99 (2006) 4.
[34] Y. Chen,D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yau, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization,” J. Appl. Phys. 84 (1998) 3912-3918.
[35] G. R. Li, X. H. Lu, W. X. Zhao, C. Y. Su, and Y. X. Tong, “Controllable Electrochemical Synthesis from Nanotubes to Nanorods and Nanocages,” Crys. Growth. Design. 8 (2008) 1277-1281.
[36] C. H. Ahn, W. S. Han, B. H. Kong, and H. K. Cho, “Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior,” Nano. 20 (2009) .
[37] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin. 99 (2002) 149-154.
[38] A. Umar, S. H. Kim, E.-K. Suh, and Y. B. Hahn, “Ultraviolet-emitting javelin-like ZnO nanorods by thermal evaporation: Growth mechanism, structural and optical properties,” Chemical Physcis Letters 440 (2007) 110-5.
[39] D. R. Vij and N. Singh, “Luminescence and Related of Ⅱ-Ⅳ Semiconductors,” Nova Science Publishers, N. Y. ,1998.
[40] M. P. Manoharan, A. V. Desai, G. Neely, and M. A. Haque, “Synthesis and elastic characterization of zinc oxide nanowires,” Journal of Nanomaterials (2008).
[41] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Advanced Materials 14 (2002) 158-60.
[42] K. I. Hagemark and P. E. Toren, “Determination of Excess Zn in ZnO the Phase Boundary Zn-Zn1+XO,” J. Electrochem. Soc. 122 (1975) 992-994.
[43] K. Lott, S. Shinkarenko, T. Kirsanova, L. Tum, E. Gorohova, A. Grebennik and A. Vishnjakov, “Zinc Nonstoichiometry in ZnO,” Solid State Ion. 173 (2004) 29-33.
[44] M. P. Lu, J. Song, M. Y. Lu, M. T. Chen, Y. Gao, L. J. Chen, and Z. L. Wang, “Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays,” Nano Lett. 9 (2009) 1223-1227.
[45] J. C. Sun, H. W. Liang, J. Z. Zhao, J. M. Bian, Q. J. Feng, L. Z. Hu, H. Q. Zhang, X. P. Liang, Y. M. Luo, and G. T. Du, “Ultraviolet Electroluminescence from N-ZnO : Ga/P-ZnO : N Homojunction Device on Sapphire Substrate with p-Type ZnO : N Layer Formed by Annealing in N2O Plasma Ambient,” Chem. Phys. Lett. 460 (2008) 548-551.
[46] L. Dunlop, A. Kursumovic, and J. L. MacManus-Driscoll, “Reproducible Growth of p-Type ZnO:N Using a Modified Atomic Layer Deposition Process Combined with Dark Annealing,” Appl. Phys. Lett. 93 (2008) 172111-1~3.
[47] H. S. Kim, S. J. Pearton, D. P. Norton, and F. Ren, “Behavior of Rapid Thermal Annealed ZnO:P Films Grown by Pulsed Laser Deposition,” J. Appl. Phys. 102 (2007) 104904-1~8.
[48] O. Lopatiuk-Tirpak, L. Chernyak, F. X. Xiu, J. L. Liu, S. Jang, F. Ren, S. J. Pearton, K. Gartsman, Y. Feldman, A. Osinsky, and P. Chow, “Studies of Minority Carrier Diffusion Length Increase in p-Type ZnO:Sb,” J. Appl. Phys. 100 (2006) 086101-1~3.
[49] R. Wang, L-H. King, and Arthur W. Sleight., “Highly conducting transparent thin films based zinc oxide,” J. Mater Res. 7 (1996) 1659-1664.
[50] B. Sang, A. Yamada, and M. Konagai., “Growth of Boron-doped ZnO thin films by atomic layer deposition,” Solar Energy Materials and Solar Cells 49 (1997) 19-26.
[51] M. Miyazaki, K. Sato, A. Mitsui, and H. Nishimura, “Properties of Ga-doped ZnO films,” J. Non-Crystal. Solid 218 (1997) 323-328.
[52] D. Gal, G. Hodes, D. Lincot, and H.–W. Schock, “electrochemical deposition of zinc oxide films from non-aqueous solution: a new buffer/window process for thin film solar cells,” Thin Solid Films 361-362 (2000) 79-83.
[53] J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kynler, L. Stolt, D. Hariskos, et al. ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance. Conference Record of the Twenty Third Ieee Photovolatic Specialists Conference-1993:362-71.
[54] B. Wacogne, M. P. Roe, T. J. Pattinson, and C. N. Pannel, “Effective piezoelectric activity of zinc oxide films grown by radio-frequency planar magnetron sputtering.” Appl. Phys. Lett. 12 (1995) 1674-6.
[55] J. X. Wang, S. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, and L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nano. 17 (2006) 4995-8.
[56] Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, and P. Xu, “Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties,” J. Phy. Chem. C. 113 (2009) 3430-5.
[57] W. Beyer, J. Hüpkes, and H. Sriebig, “Transparent Conducting Oxide Films for Thin Film Silicon Photovoltaics,” Thin Solid Films 516 (2007) 147-154.
[58] S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of Hydrogen Plasma Treatment on Transparent Conducting Oxides,” Appl. Phys. Lett. 49 (1986) 394-396.
[59] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers,” Chem. Mater. 14 (2002) 1216-9.
[60] R. G. Gordon, “Criteria for choosing Transparent Conductors,” MRS Bulletin (2000) 52-57.
[61] E. Chikoidze, M. Nolan, M. Modreanu, V. Sallet, and P. Galtier, “Effect of Chlorine doping on electrical and optical properties of ZnO thin films,” Thin Solid Films 516 (2008) 8146-9
[62] K. E. Lee, M. Wang, E. J. Kim, and S. H. Hahn, “Structural, electrical and optical properties of sol-gel AZO thin films,” Current Applied Physic 9 (2009) 683-7.
[63] T. S. Moss, “The Interpretation of the Properties of Indium Antimonide,” Proc. Phys. Soc. London, Sect. B 67 (1954) 775-782.
[64] E. Burstein, “Anomalous Optical Absorption Limit in InSb,” Phys. Rev. 93 (1954) 632-633.
[65] I. Hamberg, C. G. Granqvist, K.-F Berggren, B. E. Sernelius, and L. Engström “Band-Gap Widening in Heavily Sn-Doping In2O3,” Phys. Rev. B 30 (1984) 3240-3249.
[66] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991) 56-8.
[67] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Advanced Materials 15 (2003) 353-89.
[68] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[69] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowires Nanolasers,” Science 292 (2001) 1897-9.
[70] P. X. Gao and Z. L. Wang, “Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS process,” J. Phys. Chem. B 108 (2004) 7534-7.
[71] S. Y. Li, C. Y. Lee, and T. Y. Tseng, “Copper-Catalyzed ZnO Nanowires on Silicon (100) Grown by Vapor-Liquid-Solid Process,” J. Cryst. Growth 247 (2003) 357-362.
[72] S. S. Brenner and G. W. Sears, “Mechanism of Whisker Growth - III Nature of Growth Sites,” Acta Met. 4 (1956) 268-270.
[73] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291 (2001) 1947-1949.
[74] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, and I. C. Chen, “Well-Aligned, Vertically Al-Doped ZnO Nanowires Synthesized on ZnO:Ga/Glass Templates,” J. Electrochem. Soc. 152 (2005) 378-381.
[75] R. C. Wang, C. P. Liu, and J. L. Huang, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature,” Appl. Phy. Let. 88 (2006) .
[76] S. Lin, H. Tang, Z. Ye, H. He, Y. Zeng, B. Zhao, and L. Zhu, “Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration,” Matterials Letters 62 (2008) 603-6.
[77] S. N. Bai, H. H. Tsai, and T. Y. Tseng, “Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method,” Thin Solid Films 516 (2007) 155-8.
[78] S. Yun, J. Lee, J. Yang, and S. Lim, “Hydrothermal synthesis of Al-doped ZnO nanorods array on Si substrate,” Physcia B 405 (2010) 413-9.
[79] C. H. Hsu and D. H. Chen, “Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films,” Nano. 21 (2010) 1-5.
[80] M. Yang, G. Yin, Z. Huang, X. Liao, Y. Kang, and Y. Yao, “Well-aligned ZnO rod arrays grown on glass substrate from aqueous solution,” Applied Surface Science 254 (2008) 2917-21.
[81] R. Könenkamp, K. Boedecker, M. C. Lux-Steiner, and M. Poschenrieder, “Thin film semiconductor deposition on free-standing ZnO columns,” Applied Physcis Letters 77 (2000) 1575-7.
[82] A. Nadarajah and R. Könenkamp, “Dilute magnetic semiconductors from electrodeposited ZnO nanowires,” Phys. Status Solidi B 248 (2011) 334-8.
[83] T. H. Fang and S. H. Kang, “Electromechanical Characteristics of ZnO:Al Nanorods,” J. Nanosci. Nanotechnol. 10 (2010) 405-12.
[84] L. A. Dobrzanski, A. Drygala, K. Golombek, P . Panek, E. Bielanska, and P. Zieba, “Laser Surface Treatment of Muticrystalline Silicon for Enhancing Optical Properties,” J. Mater. Process. Technol. 201 (2008) 291-296.
[85] O. Schultz, S. W. Glunz, and G. P. Willeke, “Muticrystalline Silicon Solar Cells Exceeding 20% Efficiency,” Prog. Photovoltaics Res. Appl. 12 (2004) 533-558.
[86] M. Edwards, S. Bowden, U. Das, and M. Burrows, “Effect of Texturing and Surface Preparation on Lifetime and Cell Performance in Heterojunction Silicon Solar Cells,” Sol. Energy Mater. Sol. Cells. 92 (2008) 1373-1377.
[87] J. Zhao, A. Wang, P. Campbell, and M. A. Green, “A 19.8% Efficient Honeycomb Multicrystalline Silicon Solar Cell with Improved Light Trapping,” IEEE Trans. Electron Devices 46 (1999) 1978-1983.
[88] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[89] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
[90] L. S. Live, O. R. Bolduc, and J. F. Masson, “Propagating Surface Plasmon Resonance on Microhole Arrays,” Anal. Chem. 82 (2010) 3780-7.
[91] R. Bhardwaj, X. H. Fang, P. Somasundaran, and D. Attinger, “Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram,” Langmuir 26 (2010) 7833-7842.
[92] V. Ng, Y. V. Lee, B. T. Chen, and A.O. Adeyeye, “Nanostructure Array Fabrication with Temperature-Controlled Self-Assembly Techniques,” Nanotechnology 13 (2002) 554-558.
[93] D. W. Schubert and T. Dunkel, “Spin Coating from a Molecular Point of View: Its Concentration Regimes, Influence of Molar Mass and Distribution,” Mater. Res. Innov. 7 (2003) 314-321.
[94] G. H. Jeong, J. K. Park, K. K. Lee, J. H. Jang, C. H. Lee, H. B. Kang, C. W. Yang, and S. J. Suh, “Fabrication of Low-Cost Mold and Nanoimprint Lithography Using Polystyrene Nanosphere,” Microelectron. Eng. 87 (2010) 51-55.
[95] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloid Surf. A-Physicochem. Eng. Asp. 219 (2003) 1-6.
[96] P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved Deposition of Large Scale Ordered Nanosphere Monolayers Via Liquid Surface Self-Assembly,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 165 (2009) 186-189.
[97] H. Q. Li, J. Low, K. S. Brown, and N. Q. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sens. J. 8 (2008) 880-884.
[98] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex-Particles on Substrates,” Langmuir 8 (1992) 3183-90.
[99] T. Ogi, L. B. Modesto-Lopez, F. Iskandar, and K. Okuyama, “Fabrication of A large Area Monolayer of Silica Particles on a Sapphire Substrate by a Spin Coating Method,” Colloid Surface A 297 (2007) 71–8.
[100] Z. Liu, Z. Jin, W. Li, and J. Qiu, “Assembly of Ordered ZnO Porous Thin Films by Cooperative Assembly Method Using Polystyrene Spheres and Ultrafine ZnO Particles,” Mater. Res. Bull. 41 (2006) 119-127.
[101] Y. Wang, J. Zhang, X. Chen, X. Li, Z. Sun, K. Zhang, D. Wang, and B. Yang, “Morphology-Controlled Fabrication of Polygonal ZnO Nanobowls Templated from Spherical Polymeric Nanowell Arrays,” J. Colloid Interface Sci. 322 (2008) 327-332.
[102] L. Chen, J. Huang, Z. Ye, H. He, Y. Zeng, S. Wang, and H. Wu, “Controllable Synthesis of Ordered ZnO Nanodots Arrays by Nanosphere Lithography,” Cryst. Growth Des. 8 (2008) 2917-2920.
[103] H. Zeng, X. Xu, Y. Bando, U. Cautam, T. Zhai, X. Fang, B. Liu, and D. Colberg, “Template Deformation-Tailored ZnO Nanorod/Nanowire Arrays: Full Growth Contorl and Optimization of Field-Emission,” Advanced Functional Materials 19 (2009) 3165-72.
[104] A. Goux, T. Pauporté, J. Chivot, and D. Lincot, “Temperature Effects on ZnO Electrodeposition,” Electrochimica Acta 50 (2005) 2239-48.
[105] J. Liu, J. She, S. Deng, J. Chen, and N. Xu, “Ultrathin Seed-Layer for Tuning Density of ZnO Nanowire Arrays and Their Field Emission Characteristics,” J. Phys. Chem. C 112 (2008) 11685-90.
[106] V. Srikant and D. R. Clarke, “Optical Absorption Edge of ZnO Thin Films: The Effect of Substrate,” J. Appl. Phys. 81 (1997) 6357-6364.
[107] X. Chen, W. Guan, G. Fang, and X. Z. Zhao, “Influence of Substrate Temperature and Post-Treatment on the Properties of ZnO:Al Thin Films Prepared by Pulsed Laser Deposition,” Appl. Surf. Sci. 252 (2005) 1561-1567.
[108] S. S. Lin, J. L. Huang, and P. Šajgalik, “The Properties of Heavily Al-Doped ZnO Films before and after Annealing in the Different Atmosphere,” Surf. Coat. Technol. 185 (2004) 254-263.
[109] M. Kemell, F. Dartigues, M. Ritala, and M. Leskelä, “Electrochemical preparation of In and Al doped ZnO thin films for CuInSe2 solar cells,” Thin Solid Films 434 (2003) 20-3.
[110] E. Rayón and C. Ferrer, “Electrochemical Deposition of ZnO Nanostructures Mechanism of Growth,” J. Nanosci. Nanotechnol. 10 (2010) 1371-5.
[111] S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mater. 10 (2009) 1-18.
[112] H. Zeng, J. Cui, B. Cao, U. Gibson, Y. Bando, and D. Golberg, “Electrochemical Deposition of ZnO Nanowire Arrays: Organization, Doping, and Properties,” Sci. Adv. Mater. 2 (2010) 336-58.
[113] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals,” Journal of Crystal Growth 203 (1999) 186-96.
[114] B. Meyer and D. Marx, “Density-functional study of the structure and stability of ZnO surfaces,” Physical Review B 67 (2003) 1-11.
[115] G. Z. Wang, Y. Wang, M. Y. Yau, C. Y. To, C. J. Deng, and D. H. L. Ng, “Synthesis of ZnO hexagonal colurmnar pins by chemical vapor deposition,” Materials letters 59 (2005) 3870-5.
[116] R. Ayouchi, F. Martin, D Leinen, and J.R. Ramos-Barrado, “Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon,” J. Cryst. Growth 247 (2003) 497-502.
[117] R. Ayouchi, F. Martin, D Leinen, and J.R. Ramos-Barrado, “Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon,” J. Cryst. Growth 247 (2003) 497-502.
[118] Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zhang, K. M. Wei, J. F. Zhu, and Y. J. Zhu, “Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property,” inorg. Chem. 46 (2007) 6675-82.
[119] S. M. Sze, “Semiconductor Devices,” Wiley (2001).
[120] K. Y. Yang, K. M. Yoon, S. Lim, H. Lee, “Direct Indium Tin Oxide Patterning Using Thermal Nanoimprint Lithography for Highly Efficient Optoelectronic Devices,” J. Vac. Sci. Technol. B 27 (2009) 2786-89.
[121] K. Jager, M. Zeman, “A Scattering Model for Surface-Textured Thin Films,” Appl. Phys. Lett. 95 (2009) 171108.
[122] H. L. Task, L. V. Genco, “Method for Measuring Haze in Transparencies, in, The United States of America as represented by the Secretary of the Air Force,” Washington, D.C., 1986.
[123] O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, “Hydrothermal synthesis of ZnO nanorod arrays photocatalytic inactivation of bacteria,” J. Phys. D : Appl. Phys. 42 (2009) 1-10.
[124] J. Wu, J. Xia, W. Lei, and B. P. Wang, “Fabrication of superhydrophobic surfaces with double-scale roughness,” Materials Letters 64 (2010) 1251-3.
[125] Z. Zhang and J. Mu, “Hydrothermal synthesis of ZnO nanobundles controlled by PEO–PPO–PEO block copolymers,” Journal of Colloid and Interface Science 307 (2007) 79-82.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2011-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明