博碩士論文 983204024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.138.204.208
姓名 王駿(Jiun Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究
(Selective hydrogenation of α,β-unsaturated aldehydes on Ag/Mg2AlO-hydrotalcite catalyst)
相關論文
★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究
★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應
★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究★ 甲醇蒸汽重組產氫觸媒之設計
★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究
★ CuB超細合金觸媒之製備與催化性質探討★ 負載式CoB非晶態合金觸媒製備與催化性質探討
★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究
★ 負載式CuB合金觸媒製備與催化性質探討★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究
★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究★ 高分子穩定化奈米NiB觸媒之製備與催化性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究採臨濕含浸法製備Ag/Mg2AlO觸媒,以檸檬醛模式反應篩選5 wt% Ag/Mg2AlO觸媒之最佳製備條件。以最佳5wt% Ag/Mg2AlO觸媒探討溶劑效應、全氫化現象、反應物分子結構、擔體效應等實驗變因之影響。並以TGA、BET、TEM、XRD、TPR、TPD等分析探討觸媒之物理特性與表面性質。此外,本研究另選用γ-Al2O3、MgO、CeO2、SiO2等不同擔體製得5wt% Ag/support觸媒,探討擔體效應之影響。
5wt% Ag/Mg2AlO觸媒之最佳製備條件為Mg2AlO擔體經100 °C煅燒、觸媒經250 °C煅燒,反應前以400 oC還原。5wt% Ag/Mg2AlO觸媒可有效將檸檬醛選擇性氫化成不飽和醇,選擇率高達97 %。
x% Ag/Mg2AlO觸媒之銀負載量小於5wt%,銀粒徑隨負載量增加而變大,檸檬醛氫化反應活性隨負載量提高而增加,且不飽和醇選擇率亦增加,屬結構敏感性。銀負載量大於5wt%,負載量提高對反應活性提升效果趨緩,且不飽和醇選擇率無明顯影響。
反應物分子於銀觸媒表面之吸附作用力不同於一般金屬觸媒,使得5wt% Ag/Mg2AlO觸媒於檸檬醛反應也不同於一般金屬觸媒催化行為。優先氫化共軛C=C/C=O鍵的C=O鍵;且不會繼續氫化單一C=C鍵;不飽和醛分子愈大,催化活性愈好;C=C鍵旁較大立體障礙的肉桂醛,不飽和醇選擇率卻不及檸檬醛。
5wt% Ag/Mg2AlO觸媒於極性溶劑乙醇有較佳的檸檬醛氫化反應活性,且醇類溶劑的碳數愈高,反應活性愈佳,不飽和醇選擇率則略下降。
Ag/support觸媒之銀顆粒大小並非影響活性的單一因素,擔體的酸鹼性也扮演重要的角色。弱鹼性基促進氫於銀觸媒表面進行不均化解離,強鹼性基則可協助氫於銀表面進行均化或不均化解離。Mg2AlO-hydrotalcite鹼性擔體於α,β-不飽和醛選擇性氫化反應的優勢,可製得具高活性的銀觸媒。
摘要(英) Silver is dispersed on a solid base of Mg2AlO-hydrotalicite using a wet impregnation method to obtain a effective catalyst for selective hydrogenation of alpha,beta-unsaturated aldehydes.
In the present study, 5wt% Ag/Mg2AlO catalysis on liquid-phase hydrogenation of a citral mode reactant. We disussed the experiment factors such as solvent effect, the whole phenomenon of hydrogenation, the molecular structure of reactants, steric effect and other impact from the experimental changes. The silver catalyst is characteristized by TGA, BET, TEM, XRD, TPR, TPD. In addition, we used γ-Al2O3, MgO, CeO2, SiO2 as support to observe the impact of support effect.
The optimal catalyst, 5wt% Ag/Mg2AlO, was prepared by following process: Mg2AlO calcined at 100 °C as a support , 5wt% Ag/Mg2AlO catalyst calcined at 250 °C, and reducted at 400 oC before the catalysis. 5wt% Ag/Mg2AlO catalyst display effectively chemoselective hydrogenation of citral into unsaturated alcohols (Nerol and Geriol) for selectivity of 97%.
The interaction force of unsaturated aldehyde molecule adsorbed on the surface of the silver metal catalyst, is different from the convalent force of conventional hydrogenation catalyst (Pt, Ni, etc), making the 5wt% Ag/Mg2AlO catalyst in citral reaction from a general catalytic behavior of metal catalysts. The C=O bond of conjugated C=C/C=O bond was hydrogenated prioritily; the remained C=C bond from conjugated C=C/C=O bond would not be hydrogenated continuously. The longer fuctional group of unsaturated aldehyde molecule, the greater catalytic activity.The 5wt% Ag/Mg2AlO has better citral hydrogenation activity in polar solvents than in nonpolar solvent. Higher alcohol carbon number can offer the catalytic better reactivity, but the unsaturated alcohol selectivity is slightly decreased.
In the discussion of support effect, we conclude the activity of silver catalyst is proportional the relations with the base site concentration of support. The particle size of the silver catalyst is not affect the activity obviously. The base sites of support can promote hydrogen dissociated on the surface of silver-based catalyst. Among the supports in study, Mg2AlO-hydrotalcite in α,β-unsaturated aldehyde hydrogenation can be obtained the high potency silver catalyst.
關鍵字(中) ★ 選擇性氫化
★ 銀觸媒
★ 不飽和醛
★ 菱水鎂鋁石
關鍵字(英) ★ selective hydrogenation
★ unsaturated aldehydes
★ silver catalyst
★ hydrotalcite
論文目次 摘 要 i
目 錄 v
圖 目 錄 viii
表 目 錄 xi
第一章 緒論 1
第二章 文獻回顧 4
2-1 銀觸媒的發展史 4
2-2 MgxAlO-hydrotalcite 擔體 6
2-2-1 MgxAlO-hydrotalcite 結構性質 6
2-2-2 MgxAlO-hydrotalcite 之製備 7
2-2-3 MgxAlO-hydrotalcite 熱處理性質 8
2-2-4 MgxAlO-hydrotalcite 觸媒酸鹼性質 11
2-3 α,β-不飽和醛選擇性氫化反應 14
2-3-1 第VIII族過渡金屬 15
2-3-2 鉑金屬觸媒 16
2-3-2-(a) 擔體效應 16
2-3-2-(b) 金屬顆粒大小之影響 18
2-3-2-(c) 促進劑之影響 20
2-3-2-(d) 溶劑效應 22
2-3-3 金觸媒 23
2-3-3-(a) 金顆粒的大小與型態 23
2-3-3-(b) 擔體性質 27
2-3-4 銀觸媒 28
2-3-4-(a) 金屬顆粒大小與表面型態之影響 28
2-3-4-(b) 擔體性質 31
2-3-4-(c) 溶劑效應 32
第三章 實驗方法與設備 33
3-1 Mg2AlO-hydrotalcite擔體之製備 33
3-2 Ag/Mg2AlO-hydrotalcite 觸媒之製備 34
3-3 擔體與觸媒性質鑑定 36
3-3-1 熱重分析儀 (TGA) 36
3-3-2 X-射線繞射分析 (XRD) 36
3-3-3 比表面積測定 (BET) 36
3-3-4 Χ-射線光電子光譜 (XPS) 37
3-3-5 穿透式電子顯微鏡 (TEM) 38
3-3-6 氫氣程式升溫還原 (H2 - TPR) 39
3-3-7 二氧化碳程溫脫附 (CO2 - TPD) 41
3-4 反應活性測試 43
3-5 實驗藥品及氣體 47
第四章 結果與討論 50
4-1 Ag/Mg2AlO-hydrotalcite 於檸檬醛選擇性氫化反應 50
4-1-1 觸媒製備條件篩選 51
4-1-1-(a) Mg2AlO擔體煅燒溫度之影響 51
4-1-1-(b) 觸媒煅燒溫度之影響 56
4-1-1-(c) 觸媒氫氣還原之影響 60
4-1-1-(d) 銀負載量之影響 71
4-1-2 溶劑效應 75
4-1-3 全程氫化現象 80
4-2 反應物分子大小與立體障礙效應 83
4-3 擔體效應 88
第五章 結論 94
總 結 95
參考文獻 96
附錄一 Ag/support觸媒於檸檬醛氫化研究 105
參考文獻 [1] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones,” Appl. Catal. A 149 (1997) 27-48.
[2] N. Mahata, F. Goncalves, M. Fernando, R. Pereira and J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst,” Appl. Catal. A 339 (2008) 159-168.
[3] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol,” React. Kinet. Catal. Lett. 35 (1987) 185-193.
[4] M. A. Vannice and B. Sen, “Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum,” J. Catal. 115 (1989) 65-78.
[5] H. Yoshitake and Y. Iwasawa, “Active sites and reaction mechanisms for deuteration of acrolein on TiO2-, Y2O3-, ZrO2-, CeO2 and Na/SiO2- supported platinum catalysts,” J. Chem. Soc., Faraday Trans. 88 (3) (1992) 503-510.
[6] A. Sepúlveda-Escribano, F. Coloma and F. Rodríguez-Reinoso, “Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts,” J. Catal. 178 (1998) 649-657.
[7] 李東穎, “Pd/hydrotalcite觸媒於苯酚一步合成環己酮之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1997).
[8] 蔡俊煌, “Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2002).
[9] 廖志偉, “一步合成甲基異丁基酮之多功能觸媒研究-Pd(Ni)/ hydrotalcite,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
[10] C. T. Chang, B. J. Liaw, C.T. Huang and Y. Z. Chen, “Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation,” Appl. Catal., A 332 (2007) 216-224.
[11] 游焜竣, “Au/MgxAlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2008).
[12] 吳佩珊, “Au觸媒於α,β-不飽和醛選擇性氫化反應之擔體效應研究,” 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2010).
[13] P. Claus, “Selective hydrogenation of α,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds,” Top. Catal. 5 (1998) 51-62.
[14] M. E. Eberhart, M. J. Donovan and R. A. Outlaw, “Ab initio calculations of oxygen diffusivity in Group IB transition metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 46 (1992) 12744-12747.
[15] L. Gang, B. G. Anderson, J. V. Grandelle and R. A. Santen, “Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts,” Appl. Catal., B 40 (2003) 101-110.
[16] O. Blank, German Patent 228 (1910) 697.
[17] T. E. Lefort, United States Patent (1935) US1998878.
[18] S. R. Seyedmonir, J. K. Plischke, M. A. Vannice, et al. “Ethylene oxidation over small silver crystallines,” J. Catal. 123 (1990) 534-549.
[19] V. I. Bukhtiyarov, I. P. Prosvirin and R. I. Kvon, “Study of reactivity of oxygen states adsorbed at a silver surface towards C2H4 by XPS, TPD and TPR,” Surf. Sci. 320 (1994) 47-50.
[20] B. Hammer and J. K. Norskov, “Electronic factors determining the reactivity of metal surfaces,” Surf. Sci. 343 (1995) 211.
[21] A. B. Mohammad, I. V. Yudanov, K. H. Lim, K. M. Neyman and N. Rsch, “Hydrogen activation on silver: A computational study on surface and subsurface sxygen species,” J. Phys. Chem. C 112 (2008) 1628-1635.
[22] A. Montoya, A. Schlunke and B. S. Haynes, “Reaction of hydrogen with Ag(111): binding states, minimum energy paths and kinetics,” J. Phys. Chem. B 110 (2006) 17145-17154.
[23] R. J. Mikovsky, M. Boudart and H. S. Taylor, “Hydrogen-deuterium exchange on copper, silver, gold and alloy surface,” J. Am. Chem. Soc. 76 (1954) 3814-3819.
[24] V. Ponec and G. C. Bond, “Catalysis by Metals and Alloys,” Elsevier: Amsterdam (1996)
[25] A. Metcalfe and M. W. Rowden, “Hydrogenation of nitrobenzene over palladium-silver catalysts,” J. Catal. 22 (1971) 30-34.
[26] C. Fragalea, M. Garganoa, N. Ravasioa, M. Rossi1 and I. Santoa, “Selective hydrogenation of penta-1,3-diene and cyclooctadienes catalyzed by silver-modified palladium catalysts,” J. Mol. Catal. 24 (1984) 211-216.
[27] Q. Zhanga, J. Li, X. Liu and Q. Zhu, “Synergetic effect of Pd and Ag dispersed on Al2O3 in the selective hydrogenation of acetylene.” Appl. Catal., A 197 (2000) 221-228.
[28] B. Ngamsom, N. Bogdanchikova, M. A. Borja and P. Praserthdam, “Characterisations of Pd-Ag/Al2O3 catalysts for selective acetylene hydrogenation: effect of pretreatment with NO and N2O,” Catal. Commun. 5 (2004) 243-248.
[29] S. Karski, I. Wito´nska, J. Rogowski and J. Gołuchowska, “Interaction between Pd and Ag on the surface of silica,” J. Mol. Catal. A: Chem. 240 (2005) 155-163.
[30] D. D. Miller and S. S. C. Chuang, “In situ infrared study of NO reduction over Pd/Al2O3 and Ag-Pd/Al2O3 catalysts under H2-rich and lean-burn conditions,” J. Taiwan Inst. Chem. Eng. 40 (2009) 613-621.
[31] S. S. C. Chuanga, S. Piena and R. Narayanana, “C2 oxygenate synthesis from CO hydrogenation on AgRh/SiO2,” Appl. Catal. 57 (1990) 241-251.
[32] S. Sugawa, K. Sayama, K. Okabe and H. Arakawa, “Methanol synthesis from CO2 and H2 over silver catalyst,” Energy Convers. Manage. 36 (1995) 665-668.
[33] M. A. Ulibarri, I. Pavlovic, C. Barriga, M. C. Hermosin and J. Cornejo, “Adsorption of anionic species on hydrotalcite-like compounds: Effect of interlayer anion and crystallinity,” Appl. Clay Sci. 18 (2001) 17-27.
[34] F. Cavani, F. Trifiro and A. Vacari, “Hydrotalcite-type anionic clays: Preparation, properties and applications,” Catal. Today. 11 (1911) 173-301.
[35] A. Corma, V. Fornes and F. Rey, “Hydrotalcite as base catalyst: Influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol,” J. Catal. 148 (1994) 205-212.
[36] N. Bejoy, “Hydrotalcite: The clay that cures,” Resonance, 6 (2001) 57-61.
[37] W. T. Reichle, “Catalytic reactions by thermally activated anionic clay minerals,” J. Catal. 94 (1985) 547-577.
[38] A. L. McKenzie , C. T. Fishel and T. J. Davis, “Investigation of the surface structure and basic properties of calcined hydrotalcite,” J. Catal. 138 (1992) 547-561.
[39] S. P. Liab and Z. P. Zhouc, “Synthesis and Characterization of the Mixed Mg/Al hydrotalcite-like compounds,” J. Dispersion Sci. Technol. 27 (2006) 1079-1084.
[40] D. Tichit , M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini and E. Farronn, “Textural properties and catalytic activity of hydrotalcite,” J. Catal. 151 (1995) 50-59.
[41] W. Yanga, Y. Kim, P. K. T. Liub, M. Sahimia and T. T. Tsotsisa, “A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide,” Chem. Eng. Sci. 57 (2002) 2945-2953.
[42] C. P. Keikar and A. A. Schutz, “Ni-, Mg- and Co-containing hydrotalcite-like materials with a sheet-like morphology: Synthesis and characterization,” Microporous Mater. 10 (1997) 163-172.
[43] M. Bolognini, F. Cavania, D. Scagliarini, C. Flego, C. Perego and M. Saba, “Heterogeneous basic catalysts as alternatives to homogeneous catalysts: Reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol,” Catal. Today 75 (2002) 103-111
[44] A. Corma, V. Fornes, R. M. Martin-Aranda and F. Rey, “Determination of base properties of hydrotalcite: Condensation of benzaldehyde with ethyl acetoacetate,” J. Catal. 134 (1992) 58-65.
[45] J. I. Di Cosimo, V. K. Díez, M. Xu, E. Iglesia and C. R. Apestegu´ıa, “Structure and surface and catalytic properties of Mg-Al basic oxides,” J. Catal. 178, (1998) 499-510.
[46] N. D. Hutson and B. C. Attwood, “High temperature adsorption of CO2 on various hydrotalcite-like compounds,” Adsorption 14 (2008) 781-789.
[47] V. K. Díez, J. I. Di Cosimo and C. R. Apesteguía, “Study of the citral/acetone reaction on MgyAlOx oxides: Effect of the chemical composition on catalyst activity, selectivity and stability,” Appl. Catal., A 345 (2008) 143-151.
[48] C. Mohr and P. Claus, “Hydrogenation properties of supported nanosized gold particles,” Sci. Prog. 84 (2001) 311-334.
[49] R. A. V. Santan and M. Neurock, “Concepts in theoretical heterogeneous catalytic reactivity,” Catal. Rev.-Sci. Eng. 37 (1995) 557-698.
[50] D. V. Sokol’skii, N. V. Anisimova, A. K. Zharmagambetova, S.G. Mukhamedzhanova and L. N. Edygenova, “Pt−Fe2O3 catalytic system for hydrogenation reactions,” React. Kinet. Catal. Lett. 33 (1987) 399-403.
[51] G. Cordier, Y. Colleuille, P. Fouilloux, in Catalyse par les Metaux (B. Imelik et al., eds.), “Editions du CNRS, Paris,” (1984) 349.
[52] G. Cordier, French Patent F 2,329,628 (1975), to Rhone-Poulene S. A.; Chem. Abstr. 87, 38862s (1997).
[53] U. K. Singh and M. A. Vannice, “Liquid-phase citral hydrogenation over SiO2-supported group VIII metals,” J. Catal. 199 (2001) 73-84.
[54] A. Giroir-Fendler, D. Richard and P. Gallezot, “In heterogeneous catalysis and fine chemicals, studies in surface science and catalysis Vol.41, Elsevier, Amsterdam,” (1988) 171-178.
[55] A. Sepúlveda-Escribano, F. Coloma and F. Rodríguez-Reinoso, “Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts,” J. Catal. 178 (1998) 649-657.
[56] M. Consonni, D. Jokic, D. Y. Murzin and R. Touroude, “High performances of Pt/ZnO catalysts in selective hydrogenation of crotonaldehyde,” J. Catal. 188 (1999) 165-175.
[57] A. Grioir-Fendler, D. Richard and P. Gallezot, “Chemioselectivity in the catalytic hydrogenateon of cinnamaldehyde: effect of metal particle morphology,” Catal. Lett. 5 (1990) 175-181.
[58] M. Englisch, A. Jentys and J. A. Lercher, “Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and TiO2,” J. Catal. 166 (1997) 25-35.
[59] M. Englisch, V. S. Ranade and J. A. Lercher, “Liquid phase hydrogenation of crotonaldehyde over Pt/SiO2,” Appl. Catal., A 163 (1997) 111-122.
[60] M. Abid, V. Paul-Boncour, and R. Touroude, “Pt/CeO2 catalysts in crotonaldehyde hydrogenation: Selectivity, metal particle size and SMSI states,” Appl. Catal. A 297 (2006) 48-59.
[61] F. Delbecq and P. Sautet, “Competitive C=C and C=O adsorption of α,β-unsaturated aldehydes on Pt and Pd surfaces in relation with the selectivity of hydrogenation reactions: a theoretical approach,” J. Catal. 152 (1995) 217-236.
[62] V. Ponec, “On the role of promoters in hydrogenateon on metals: α,β-unsaturated aldehydes and ketones,” Appl. Catal. A 149 (1997) 27-48.
[63] D. Goupil, P. Fouilloux and R. Maurel, “Activity and selectivity of Pt-Fe/C alloys for the liquid phase hydrogenation of cinnamaldehyde to cinnamyl alcohol,” React. Kinet. Catal. Lett. 35 (1987) 185-193.
[64] N. Mahata, F. Goncalves, M. Fernando, R. Pereira and J. L. Figueiredo, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst,” Appl. Catal. A 339 (2008) 159-168.
[65] V. Satagopan and S.B. Chandalia, “Selectivity aspects in the multi-phase hydrogenation of α,β-unsaturated aldehydes over supported noble metal catalysts: Part II ,” J. Chem. Tech. Biotechnol. 60 (1994) 17-21.
[66] W. Koo-Amornpattana amd J.M. Winterbottom, “Pt and Pt-alloy catalysts and their properties for the liquid-phase hydrogenation of cinnamaldehyde,” Catal. Today 66 (2001) 277-287.
[67] F. Zhao, Y. Ikushimab, M. Chatterjeeb, O. Satob and M. Arai, “Hydrogenation of an α,β-unsaturated aldehyde catalyzed with ruthenium complexes with different fluorinated phosphine compounds in supercritical carbon dioxide and conventional organic solvents, ” J. Supercrit Fluid 27 (2003) 65-72.
[68] M. Shirai, T. Tanaka and M. Arai, “Selective hydrogenation of α,β-unsaturated aldehyde to unsaturated alcohol with supported platinum catalysts at high pressures of hydrogen,” J. Mol. Catal. A: Chem. 168 (2001) 99-103.
[69] M. A. Aramendia, V. Borau, C. Jimenez, J.M. Marinas, A. Porras and F. J. Urbano, “Selective liquid-phase hydrogenation of citral over supported palladium,” J. Catal. 172 (1997) 46-54.
[70] I. Kun, G. Szöllösi and M. Bartók, “Crotonaldehyde hydrogenation over clay-supported platinum catalysts,” J. Mol. Catal. A: Chem. 169 (2001) 235-246.
[71] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi, and D.Y. Murzin, “Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite,” J. Mol. Catal. A: Chem. 217 (2004) 145-154.
[72] J. Hájek, N. Kumar, P. Mäki-Arvela, T. Salmi D. Y. Murzin, I. Paseka, T. Heikkilä, E. Laine, P. Laukkanen and J. Väyrynen, “Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde,” Appl. Catal. A 251 (2003) 385-396.
[73] S. Mukherjee and M. A. Vannice, “Solvent effects in liquid-phase reactions I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects,” J. Catal. 243 (2006) 108-130.
[74] J. Jia, K. Haraki, J. N. Kondo, K. Domen and K. Tamaru, “Selective hydrogenation of acetylene over Au/Al2O3 catalyst,” J. Phys. Chem. B 104 (2000) 11153-11156.
[75] M. Okumura, T. Akita and M. Haruta, “Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts,” Catal. Today 74 (2002) 265-269.
[76] J. E. Bailie and G. J. Hutchings, “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation,” Chem. Commun. (1999) 2151.
[77] S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister and P. Claus, “Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions,” Catal.Today 72 (2002) 63-78.
[78] C. Mohr, H. Hofmeister and P. Claus, “The influence of real structure of gold catalysts in the partial hydrogenation of acrolein,” J. Catal. 213 (2003) 86-94.
[79] J. Radnik, C. Mohr and P. Claus, “On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis,” Phys. Chem. Chem. Phys. 5 (2003) 172-177.
[80] C. Mohr, H. Hofmeister, J. Radnik and P. Claus, “Identification of active sites in gold-catalyzed hydrogenation of acrolein,” J. Am. Chem. Soc. 125 (2003) 1905-1911.
[81] J. E. Bailie, H. A. Abdullah, J. A. Anderson, C. H. Rochester, N.V. Richardson, N. Hodge, Jian-Guo Zhang, A. Burrows, C.J. Kiel, and G.J. Hutchings, “Hydrogenation of but-2-enal over supported Au/ZnO catalysts,” Phys. Chem. Chem. Phys. 3 (2001) 4113-4121.
[82] R. Zanella, C. Louis, S. Giorgio and R. Touroude, “Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism,” J. Catal. 223 (2004) 328-339.
[83] B. Campo, C. Petit and M. A. Volpe, “Hydrogenation of crotonaldehyde on different Au/CeO2 catalysts,” J. Catal. 254 (2008) 71-78.
[84] E. Bus, R. Prins and J. A. van Bokhoven, “Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts,” Catal. Commun. 8 (2007) 1397-1402.
[85] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti and S. Galvagno, “A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts,” Catal. Today 122 (2007) 341-351.
[86] B. Campo, M. Volpe, S. Ivanova and R. Touroude, “Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts,” J. Catal. 242 (2006) 162-171.
[87] J. L. Solomon and R. J. Madix, “π bonded intermediates in alcohol oxidation: Orientations of allyloxy and propargyloxy on Ag(110) by near edge X-ray absorption fine structure,” J. Chem. Phys. 89 (1998) 5316-5322.
[88] J. L. Solomon and R. J. Madix, “Kinetlcs and mechanism of the oxidation of allyl alcohol on Ag(110),” J. Phys. Chem. 91 (1987) 6241-6244.
[89] P. Claus and H. Hofmeister, “Electron microscopy and catalytic study of silver catalysts: Structure sensitivity of the hydrogenation of crotonaldehyde,” J. Phys. Chem. B 1999, 103, 2766-2775.
[90] B. C. Khanra, Y. Jugnet and J. C. Bertolini “Energetics of acrolein hydrogenation on Pt(111) and Ag(111) surfaces: a BOC-MP model study,” J. Mol. Catal. A: Chem. 208 (2004) 167-174.
[91] M. Bron, D. Teschner, A. Knop-Gericke, F. C. Jentoft, J. Kröhnert, J. Hohmeyer, C. Volckmar, B. Steinhauer, R. Schlögl and P. Claus, “Silver as acrolein hydrogenation catalyst: Intricate effects of catalyst nature and reactant partial pressures,” Phys. Chem. Chem. Phys. 9 (2007) 3559-3569.
[92] K. Brandt, M. E. Chiu, D. J. Watson, M. S. Tikhov and R. M. Lambert, “Chemoselective catalytic hydrogenation of acrolein on Ag(111): Effect of molecular orientation on reaction selectivity,” J. Am. Chem. Soc. 131 (2009) 17286-17290.
[93] R. Ferullo, M. M. Branda and F. Illas, “Coverage dependence of the structure of acrolein adsorbed on Ag(111),” J. Phys. Chem. Lett. 1 (2010) 2546-2549.
[94] K. H. Lim, Z. X. Chen, K. M. Neyman and N. Rösch, “Adsorption of acrolein on single-crystal surfaces of silver: Density functional studies,” Chem. Phys. Lett. 420 (2006) 60-64.
[95] M. Lucas and P.Claus, “Hydrogenations over silver: A highly active and chemoselective Ag-In/SiO2 catalyst for the one-step synthesis of allyl alcohol from acrolein,” Chem. Eng. Technol. 28 (2005) 867-870.
[96] F. Haass, M. Bron, H. Fuess and P. Claus, “In situ X-ray investigations on AgIn/SiO2 hydrogenation catalysts,” Appl. Catal. A 318 (2007) 9-16.
[97] W. Gru1nert, A. Bru1ckner, H. Hofmeister and P. Claus, “Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation,” J. Phys. Chem. B 18 (2004) 5709-5717.
[98] C. E. Volckmar, M. Bron, U. Bentrup, A. Martinb and P. Claus, “Influence of the support composition on the hydrogenation of acrolein over Ag/SiO2-Al2O3 catalysts,” J. Catal. 261 (2009) 1-8.
[99] M. Steffan, M. Lucas, A. Brandner, M. Wollny, N. Oldenburg and P. Claus, “Selective hydrogenation of citral in an organic solvent, in a ionic liquid, and in substance,” Chem. Eng. Technol. 30 (2007) 481-486.
[100] P. G. N. Mertens, F. Cuypers, P.Vandezande, X.Ye, F.Verpoort, I. F. J. Vankelecom and D. E. De Vos, “Ag0 and Co0 nanocolloids as recyclable quasihomogeneous metal catalysts for the hydrogenation of α,β-unsaturated aldehydes to allylic alcohol fragrances,” Appl. Catal. A 325 (2007) 130-139.
指導教授 陳吟足(Yin-Zu Chen) 審核日期 2011-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明