博碩士論文 983204027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.141.41.187
姓名 沈柏言(Po-Yen Shen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 可見光對羊水間葉幹細胞成骨分化之影響
(Osteoblast-like Differentiation of Amniotic Fluid-Derived Stem Cells Irradiated with Visible Light)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光調控神經細胞之基因表現及突觸生長★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究
★ 人類表皮成長因子的結構穩定性及生物活性測定★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響
★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究
★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究
★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究★ 人類脂肪幹細胞的膜純化法與分化能力研究
★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究
★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上★ 使用不同孔洞大小之耐倫薄膜從脂肪組織中分離及純化人類脂肪幹細胞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究將探討在不同強度(0-2 mW/cm2)及波長[blue (470 nm), green (525 nm), yellow (600 nm), and red (630 nm)]的發光二極體LED光照射下,對於羊水幹細胞前驅性基因(Oct-4, Sox2, and Nanog)以及成骨分化能力的影響。研究結果顯示,經過24小時LED可見光的照射,可以有效的增加羊水幹細胞前驅性基因的表現量。綠色光源的照射跟紅光、黃光、藍光比較起來,對於羊水幹細胞前驅性基因表現量有著非常顯著的提升。綠光跟藍光的照射,對於羊水幹細胞的成骨分化能力更有顯著提升的效果,但紅光跟黃光的照射並沒有太大的提升。此外本研究也對此可見光的效益成因做了探討,結果指出可見光促進羊水幹細胞成骨分化的原因並不是因為活性氧自由基的產生所造成。當在分化培養液中加入活性氧自由基抑制劑後,Alkali phosphatase activity(成骨分化的前段Marker) 以及Osteopontin(成骨分化的後段Marker)基因表現並沒有太顯著的改變。因此可以聯想到細胞如羊水幹細胞在可見光的影響下,在細胞上可能存在光接受器(light receptor)且在光照射後在基因表現上會有訊息的傳遞。
摘要(英) The effect of visible light irradiation on the expression of pluripotent genes (Oct-4, Sox2, and Nanog) in amniotic fluid-derived stem cells (AFSCs) and on the osteogenic differentiation ability of AFSCs was investigated using light emitting diodes (LEDs) at 0-2 mW/cm2 in various wavelengths [blue (470 nm), green (525 nm), yellow (600 nm), and red (630 nm)]. Pluripotent gene expression in AFSCs was up-regulated by visible light irradiation from a LED for 24 hours. Green light irradiation of AFSCs upregulated the expression of pluripotent genes more significantly than irradiation with blue, yellow or red light. The osteogenic differentiation of AFSCs was facilitated by green and blue light irradiation, but was not significantly facilitated by red or yellow light. Facilitated differentiation into osteoblasts by visible light irradiation was not mediated by reactive oxygen species (ROS); alkali phosphatase activity (a marker of early osteogenic differentiation) and gene expression of osteopontin (a marker of late osteogenic differentiation) did not change significantly between AFSCs in differentiation medium with or without a ROS scavenger (vitamin C). The mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) pathway, as well as other unknown signaling pathways, may be responsible for the activation of signaling pathways that facilitate the differentiation of AFSCs into osteoblasts upon light irradiation.
關鍵字(中) ★ 羊水幹細胞
★ 成骨分化
關鍵字(英) ★ Amniotic Fluid-Derived Stem Cells
★ Osteoblast-like Differntiation
論文目次 CHAPTER ONE INTRODUCTION 1
1-1 Amniotic Fluid Cells 1
1-1.1 Amniotic fluid cell type 2
1-1.1.1 F-type colonies 3
1-1.1.2 AF-type colonies 4
1-1.1.3 E-type colonies 4
1-1.2 Isolation of amniotic fluid stem cell 4
1-1.3 Characterization of amniotic fluid stem cell 5
1-1.4 Pluripotency of amniotic fluid stem cells 7
1-2 The effect of visible light on cells 9
1-2.1 The effect of visible light on mature cells 9
1-2.2 The effect of visible light on nerve cells 11
1-2.3 The effect of visible light on stem cells 11
1-3 Osteogenic differentiation 12
1-3.1 The process of bone development in situ 12
1-3.2 The markers of osteogenic differentiation 13
1-3.3 Extracellular matrix substratum for promoting osteogenic differentiation 14
1-3.4 Application of physical stimuli 15
1-3.5 Free radicals and reactive oxygen species 16
1-4 Polymerase chain reaction (PCR) 17
1-4.1 Procedure of PCR 17
1-4.2 Reverse transcription polymerase chain reaction (RT-PCR) and Quantitative real time polymerase chain reaction (qRT-PCR) 19
1-4.3 Procedure of RT-PCR 20
CHAPTER TWO MATERIALS AND METHODS 21
2-1 Materials 21
2-2 Methods 24
2-2.1 Preparation of stem cells isolation and culture 24
2-2.2 Analysis 27
CHAPTER THREE RESULTS AND DISCUSSION
3-1 Effect of Light Irradiation on the Expression of Pluripotent Gene in AFSCs 33
3-2 Effect of Light Irradiation Intensity on Osteogenic Differentiation 39
3-3 The Effect of the Wavelength of Light on Osteogenic Differentiation 45
3-4 The Mechanism for the Facilitated Differentiation of AFSCs into Osteoblast 52
CHAPTER FOUR CONCLUSION 57
CHAPTER FIVE REFERENCES 58
參考文獻 1. Gosden CM, Amniotic fluid cell types and culture. Br Med Bull, Vol. 39, 348–54 (1983).
2. Hoehn H, Salk D, Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol, Vol. 26: 11–34 (1982).
3. Ming-Song Tsai, Jia-Ling Lee, Yu-Jen Chang and Shiaw-Min Hwang, Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction Vol.19, No.6, 1450-1456 (2004)
4. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., and other 6 authors: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49 (2002).
5. Hoehn H, Salk D, Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol, Vol. 26: 11–34 (1982).
6. Laura Perrone, Mario Giuffrè, Caterina D'Alfonso, Maria T. Carbone, Giuseppe Presta, Antonino Di Toro, Rosario Di Toro, Postnatal weight change is influenced by mother-newborn pair leptin levels. Nutrition Research, Vol. 20, 1531-1536 (2000)
7. Fernanda Zambotti, Karl Blau, Graham S. King, Stuart Campbell, M. Sandler, Monoamine metabolites and related compounds in human amniotic fluid: Assay by gas chromatography and gas chromatography-mass spectrometry. Clinica Chimica Acta, Vol. 61, 247-256 (1975)
8. Colter, D. C., Class, R., DiGirolamo, C.M., and Prockop, D. J.: Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. USA, Vol. 97, 3213–3218 (2000).
9. Ming-Song Tsai, Shiaw-Min Hwang, Yieh-Loong Tsai, Fu-Chou Cheng, Jia-Ling Lee, and Yu-Jen Chang, Clonal Amniotic Fluid-Derived Stem Cells Express Characteristics of Both Mesenchymal and Neural Stem Cells. Biology of Reproduction, Vol. 74, 545–551 (2006)
10. Baksh, D., Song, L., and Tuan, R. S.: Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell. Mol. Med., Vol. 8, 301–316 (2004)
11. Ririe, K.M., R.P. Rasmussen and C.T. Wittwer., Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem, Vol. 245, 154-160 (1997).
12. Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci USA, Vol. 98, 113–8 (2001).
13. Paolo De Coppi, Georg Bartsch, Jr, M Minhaj Siddiqui, Tao Xu, Cesar C Santos, Laura Perin, Gustavo Mostoslavsky, Ange’line C Serre, Evan Y Snyder, James J Yoo, Mark E Furth, Shay Soker &Anthony Atala, Isolation of amniotic stem cell lines with potential for therapy. Nature biotechnology, Vol. 25, Number 1 (2007).
14. Yu-Bao Zheng, Zhi-Liang Gao, Chan Xie, Hai-Peng Zhu, Liang Peng, Jun-Hong Chen, Yu Tian Chong, Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: A comparative study. Cell Biology International, Vol. 32, 1439-48 (2008)
15. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science, Vol. 284, 143–7 (1999).
16. Zuk PA, Zhu M, Ashjian P, DeUgarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, Vol. 13, 4279–95 (2002).
17. Kubista M, Rosner M, Kubista E, Bernaschek G, Hengstschläger M. Brca1 regulates in vitro differentiation of mammary epithelial cells. Oncogene, Vol. 21, 4747–56 (2002).
18. Soucek T, Hölzl G, Bernaschek G, Hengstschläger M. A role of the tuberous sclerosis gene-2 product in neuronal differentiation. Oncogene, Vol. 16, 2197–204 (1998).
19. Prusa AR, Marton E, Rosner M, Bettelheim D, Lubec G, Pollak A, Bernaschek G, Hengstschläger M. Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol, Vol. 191, 309–14 (2004)
20. Liebmann J, Born M, Kolb-Bachofen V. Blue-light irradiation regulates proliferation and differentiation in human skin cells. J Invest Dermatol. Vol. 130, 259-269 (2010).
21. Oron U. Photoengineering of tissue repair in skeletal and cardiac muscles. Photomed Laser Surg, Vol. 24, 111-120 (2006).
22. Hogset A, Engesarter BO, Prasmickaite L et al. Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. Cancer Gene Ther, Vol. 9, 365-371 (2002).
23. Prasmickaite L, Hogset A, Olsen VM et al. Photochemically enhanced gene transfection increases the cytotoxicity of the herpes simplex virus thymidine kinase gene combined with ganciclovir. Cancer Gene Ther, Vol. 11, 514-523 (2004).
24. Chen A, Du L, Xu Y et al. The effect of blue light exposure on the expression of circadian genes : bmall and cryptochrome 1 in peripheral blood mononuclear cells of jaundiced neonates Pediatr Res, Vol. 58, 1180-1184 (2005).
25. Gradinaru V, Mogri M, Thompson KR et al. Optical deconstruction of parkinsonian neural circuity. Science, Vol. 324, 354-359 (2009).
26. Vinck EM, Cagnie BJ, Cornelissen MJ et al. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Laser Med Sci, Vol. 18, 95-99 (2003)
27. Vinck EM, Cagnie BJ, Cornelissen MJ et al. Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg, Vol. 23, 167-171 (2005).
28. Zhang Y, Song S, Fong CC et al. cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol, Vol. 120, 849-857 (2003).
29. Aggarwal BB, Quintanilha AT, Cammack R et al. Damage to mitochondrial electron transport and energy coupling by visible light. Biochim Biophys Acta, Vol. 502, 367-382 (1978).
30. Gorgidze LA, Oshemkova SA, Vorobjev IA. Blue light inhibits mitosis in tissue culture cells. Biosci Rep, Vol. 18, 215-224 (1998).
31. Pflaum M, Kielbassa C, Garmyn M et al. Oxidative DNA damage induced by visible light in mammalian cells: extent, inhibition by antioxidants and genotoxic effects. Mutat Res, Vol. 408, 137-146 (1998).
32. Lewis JB, Wataha JC, Messer RLW et al. Blue light differentially alters cellular redox properties. J Biomed Master Res B, Vol. 72B, 223-229 (2005).
33. Karu TI, Pyatibrat LV, Afanasyeva NI. A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem Photobiol, Vol. 80, 366-372 (2004).
34. Zhang F, Prigge M, Beyriere F et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci, Vol. 11, 631-633 (2008).
35. Zhang F, Wang LP, Brauner M et al. Multimodal fast optical interrogation of neural circuitry. Nature, Vol. 446, 633-639 (2007).
36. Gradinaru V, Thompson KR, Deisseroth K. eNpHR : a Natronomonas halorhodopsin enhanced for optogenetic application. Brain Cell Bio, Vol. 36, 129-139 (2008).
37. Giuliani A, Lorenzini L, Gallamini M et al. Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress. Bmc Complem Altern M (2009)
38. Higuchi A, Kitamura H, Shishimine K et al. Visible light is able to regulate neurite outgrowth. J Biomater Sci Polym Ed, Vol. 14, 1377-1388 (2003).
39. Higuchi A, Watanabe T, Matsubara Y et al. Regulation of neurite outgrowth by intermittent irradiation of visible light. J Phys Chem B, Vol. 109, 11033-11036 (2005).
40. Higuchi A, Watanabe T, Noguchi Y et al. Visible light regulates neurite outgrowth of nerve cells. Cytotechnology, Vol. 54, 181-188 (2007).
41. Edwards JA, Cline HT. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. J Neurophysiol, Vol. 81, 895-907 (1999).
42. Ehrlicher A, Betz T, Stuhrmann B et al. Guiding neuronal growth with light. Proc Natl Acad Sci U S A, Vol. 99, 16024-16028 (2002).
43. Wollman Y, Rochkind S, Simantov R. Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells. Neurol Res, Vol. 18, 467-470 (1996).
44. Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Laser Surg Med, Vol. 39, 373-378 (2007).
45. Li WT, Leu YC, Wu JL. Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg, Vol. 28 Suppl 1, S157-165 (2010).
46. Eduardo FD, Bueno DF, de Freitas PM et al. Stem cell proliferation under low intensity laser irradiation: A preliminary study. Laser Surg Med, Vol. 40, 433-438 (2008).
47. Abramovitch-Gottlib L, Gross T, Naveh D et al. Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Laser Med Sci, Vol. 20, 138-146 (2005).
48. Mvula B, Mathope T, Moore T et al. The effect of low level laser irradiation on adult human adipose derived stem cells. Laser Med Sci, Vol. 23, 277-282 (2008).
49. Hou JF, Zhang H, Yuan X et al. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med, Vol. 40, 726-733 (2008).
50. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature, Vol. 423, 349-55 (2003).
51. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, Vol. 89(5), 765-71 (1997).
52. Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem, Vol. 99(5), 1233-9 (2006).
53. Otto F, Kanegane H, Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat, Vol. 19(3), 209-16 (2002).
54. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, Vol. 108(1), 17-29 (2002).
55. Lian J, Stewart C, Puchacz E, Mackowiak S, Shalhoub V, Collart D, et al. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci U S A, Vol. 86, 1143–7 (1989).
56. Nomura S, Wills AJ, Edwards DR, Heath JK, Hogan BL. Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization J Cell Biol, Vol. 106(2),441–50 (1988).
57. Kühn K, Glanville RW, BabelW, Qian RQ, Dieringer H, Voss T, et al. The structure of type IV collagen. Ann N Y Acad Sci, Vol. 460, 14–24 (1985).
58. D.J. O’Connor, B.A. Sexton, R.St.C. Smart (Eds.), Surface Analysis Methods in Materiais Science, Springer-Verlag, Berlin, (1992).
59. Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M.: Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells, Blood, Vol. 102, 906–915 (2003).
60. On line resources︰A scientific and Industrial Research Organisation.
http://www.aaranyak.org/Projects/PCR.htm
61. Lawyer FC, Stoffel S, Saiki RK, Chang SY, Landre PA, Abramson RD, and Gelfand DH High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity, PCR Methods Appl. Vol. 2, 275–287 (1993).
62. Freeman,W.M., Walker,S.J. and Vrana,K.E. Quantitative RT-PCR: pitfalls and potential, Biotechniques, Vol. 26, 112–115 (1999).
63. Simmons, P. J. and Torok-Storb, B.: Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1, Blood, Vol. 78, 55–62 (1991).
64. Gilliland, G., S. Perrin, K. Blanchard and H.F. Bunn., Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction, Proc. Natl. Acad. Sci. USA, Vol. 87, 2725-2729 (1990).
65. Rappolee, D.A., D. Mark, M.J. Banda and Z. Werb. Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotypin, Science, Vol. 241, 708-712 (1988).
66. D.J. O’Connor, B.A. Sexton, R.St.C. Smart (Eds.), Surface Analysis Methods in Materiais Science, Springer-Verlag, Berlin (1992).
67. Ririe, K.M., R.P. Rasmussen and C.T. Wittwer., Product differentiation by analysis of DNA melting curves during the polymerase chain reaction, Anal. Biochem., Vol. 245, 154-160, (1997).
68. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., and Thomson, J. A.: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol., Vol. 19, 1129–1133 (2001).
69. Cheng S, Fockler C, Barnes WM, and Higuchi R, Effective amplification of long targets from cloned inserts and human genomic DNA, Proc Natl Acad Sci. Vol. 91, 5695–5699 (1994).
70. Holland, P.M., R.D. Abramson, R. Watson and D.H. Gelfand. Detection of specific polymerase chain reaction product by utilizing the 5’-3’exonuclease activity of Thermus aquaticus DNA polymerase, Proc. Natl. Acad. Sci. USA, Vol. 88, 7276-7280 (1991).
71. Chien A, Edgar DB, and Trela JM, Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus, J. Bacteriol, Vol. 174, 1550–1557 (1976).
72. Becker-André‚ M. and K. Hahlbrock., Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY), Nucleic Acids Res, Vol. 17, 9437- 9446 (1989).
73. Puchacz E, Lian JB, Stein GS, Wozney J, Huebner K, Croce C, Chromosomal localization of the human osteocalcin gene, Endocrinology, Vol. 124 , 2648–50 (1989).
74. Cancela L, Hsieh CL, Francke U, Price PA, Molecular structure, chromosome assignment, and promoter organization of the human matrix Gla protein gene, J. Biol. Chem. Vol.265, 15040–8 (1990).
75. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G, Endocrine regulation of energy metabolism by the skeleton, Cell Vol.130 (3), 456–69 (2007).
76. Ashizawa N, Graf K, Do YS, et al., Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction, J. Clin. Invest, Vol. 98 (10), 2218–27 (1996).
77. Murry CE, Giachelli CM, Schwartz SM, Vracko R, Macrophages express osteopontin during repair of myocardial necrosis, Am. J. Pathol, Vol. 145 (6), 1450–62 (1994).
78. Ikeda T, Shirasawa T, Esaki Y, Yoshiki S, Hirokawa K., Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta, J. Clin. Invest, Vol. 92 (6), 2814–20 (1993).
79. Uaesoontrachoon K, Yoo HJ, Tudor E, Pike RN, Mackie EJ, Pagel CN, Osteopontin and skeletal muscle myoblasts: Association with muscle regeneration and regulation of myoblast function in vitro, Int. J. Biochem. Cell Bio. , Vol.40 (10), 2303–14 (2008).
80. Merry, K., Dodds, R., Littlewood, A., Gowen, M., Expression of Osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone, J Cell Sci, Vol. 104 (4), 1013–1020 (1993).
81. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R., de Crombrugghe, B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation". Cell, Vol. 108 (1), 17–29 (2002).
82. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, Vol.89 (1), 747–754 (1997).
83. Choi ST, Kim JH, Kang EJ, Lee SW, Park MC, Park YB, Lee SK. Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology(Oxford) , Vol. 47 (12), 1775–9 (2008).
84. Reinholt FP, Hultenby K, Oldberg A, Heinegård D. Osteopontin--a possible anchor of osteoclasts to bone. Proc. Natl. Acad. Sci. U.S.A, Vol. 87 (12), 4473–5 (1990).
85. Olsen BR, Reginato AM, Wang W, Bone development Annu Rev Cell Dev Biol, Vol. 16, 191–220 (2000).
86. Schwartz Z, Boyan BD. Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem, Vol. 56, 340–347 (1994).
87. Andrades JA, Han B, Becerra J, Sorgente N, Hall FL, Nimni ME, A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res, Vol. 250, 485–498 (1999).
88. Nakagawa T, Tagawa T, Ultrastructural study of direct bone formation induced by BMPs-collagen complex implanted into an ectopic site. Oral Dis, Vol. 6, 172–179 (2000) .
89. Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B, Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng, Vol. 5, 545–554 (1999).
90. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res, Vol. 17, 205–213 (1999).
91. Toquet J, Rohanizadeh R, Guicheux J, Couillaud S, Passuti N, Daculsi G, Heymann D Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic. J Biomed Mater Res, Vol. 44, 98–108 (1999).
92. Ohgushi H, Miyake J, Tateishi T. Mesenchymal stem cells and bioceramics: Strategies to regenerate the skeleton. Novartis Found Symp, Vol. 249,118–132 (2003).
93. Gurevich O, Vexler A, Marx G, Prigozhina T, Levdansky L, Slavin S, Shimeliovich I, Gorodetsky R. Fibrin microbeads for isolating and growing bone marrow-derived progenitor cells capable of forming bone tissue. Tissue Eng, Vol. 8, 661–672 (2002).
94. Martin I, Shastri VP, Padera RFJ, Mackay AJ, Langer R, Vunjak-Novakovic G, Freed LE. Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res, Vol. 55, 229–235 (2001).
95. Cao T, Ho KH, Teoh SH. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng, Vol. 9(Suppl 1),S103–S112 (2003).
96. Yoshimoto H, Shin YM, Terai H, Vacanti JP A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, Vol. 24, 2077–2082 (2003).
97. Kitamura S, Ohgushi H, Hirose M, Funaoka H, Takakura Y, ItoH. Osteogenic differentiation of human bone marrowderived mesenchymal cells cultured on alumina ceramics. Artif Organs, Vol. 28, 72–82 (2004).
98. Eriksson C. Bone morphogenesis and surface charge. Clin Orthop, Vol. 121, 295–302 (1976).
99. Maroudas NG. Sulphonated polystyrene as an optimal substratum for the adhesion and spreading of mesenchymal cells in monovalent and divalent saline solutions. J Cell Physiol, Vol. 90, 511–519 (1977).
100. Campoccia D, Arciola CR, Cervellati M, Maltarello MC, Montanaro L. In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorohydroxyapatite-coated substrata with different roughness. Biomaterials, Vol. 24, 587–596 (2003).
101. Xie Y, Sproule T, Li Y, Powell H, Lannutti JJ, Kniss DA. Nanoscale modifications of PET polymer surfaces via oxygenplasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cells in vitro. J Biomed Mater Res, Vol. 61, 234–245 (2002).
102. Lohmann CH, Bonewald LF, Sisk MA, Sylvia V, Cochran DL, Dean DD, Boyan, BD, Schwartz Z. Maturation state determines the response of osteogenic cells to surface roughness and 1,25-dihydroxyvitamin D3. J Bone Miner Res, Vol. 15, 1169–1180 (2000).
103. Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix, Vol. 12, 202–212 (1992).
104. Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, Nagai N, Dohi Y, Ohgushi H. “BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis.” J Biomed Mater Res, Vol. 39, 190–199 (1998).
105. Fischer EM, Layrolle P, Van Blitterswijk CA, De Bruijn JD. Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles. Tissue Eng, Vol. 9, 1179–1188 (2003).
106. Petersson CJ, Holmer NG, Johnell O. Electrical stimulation of osteogenesis: Studies of the cathode effect on rabbit femur. Acta Orthop Scand, Vol. 53, 727–732 (1982).
107. Osterman AL, Bora FW Jr. Electrical stimulation applied to bone and nerve injuries in the upper extremity. Orthop Clin North Am, Vol. 17, 353–364 (1986).
108. Yonemori K, Matsunaga S, Ishidou Y, Maeda S, Yoshida H. Early effects of electrical stimulation on osteogenesis. Bone, Vol. 19, 173–180 (1996).
109. Narkhede PR. A histologic evaluation of the effect of electrical stimulation on osteogenic changes following placement of blade-vent implants in the mandible of rabbits. J Oral Implantol, Vol. 24, 185–195 (1998).
110. Wang Q, Zhong S, Ouyang J, Jiang L, Zhang Z, Xie Y, Luo S. Osteogenesis of electrically stimulated bone cells mediated in part by calcium ions. Clin Orthop, Vol. 348, 259–268 (1998).
111. Lee JH, McLeod KJ. Morphologic responses of osteoblastlike cells in monolayer culture to ELF electromagnetic fields. Bioelectromagnetics, Vol. 21, 129–136 (2000).
112. Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, Boyan BD. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res, Vol. 18, 637–646 (2000).
113. Lohmann CH, Schwartz Z, Liu Y, Li Z, Simon BJ, Sylvia VL, Dean DD, Bonewald LF, Donahue HJ, Boyan BD. Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J Orthop Res, Vol. 21, 326–334 (2003).
114. McLeod KJ, Rubin CT. The effect of low-frequency electrical fields on osteogenesis. J Bone Joint Surg Am, Vol. 74, 920–929 (1992).
115. McLeod KJ, Rubin CT. The effect of low-frequency electrical fields on osteogenesis. J Bone Joint Surg Am, Vol. 74, 920–929 (1992).
116. Rubin CT, Donahue HJ, Rubin JE, McLeod KJ. Optimization of electric field parameters for the control of bone remodeling: Exploitation of an indigenous mechanism for the prevention of osteopenia. J Bone Miner Res, Vol. 8, S2;S573–S581 (1993).
117. Becker RO, Spadaro JA, Marino AA. Clinical experiences with low intensity direct current stimulation of bone growth. Clin Orthop, Vol. 124, 75–83 (1977).
118. Rubin CT, McLeod KJ, Lanyon LE. Prevention of osteoporosis by pulsed electromagnetic fields. J Bone Joint Surg Am, Vol. 71, 411–417 (1989).
119. Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam B, Metzger DW, Bizios R. Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res, Vol. 59, 499–506 (2002).
120. Goodman S, Aspenberg P. Effects of mechanical stimulationon the differentiation of hard tissues. Biomaterials, Vol. 14, 563–569 (1993).
121. Pavlin D, Zadro R, Gluhak-Heinrich J. Temporal pattern of stimulation of osteoblast-associated genes during mechanicallyinduced osteogenesis in vivo: Early responses of osteocalcin andtype I collagen. Connect Tissue Res, Vol. 42, 135–148 (2001).
122. Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT, Noda M. Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res, Vol. 18, 1706–1715 (2003).
123. LaMothe JM, Zernicke RF. Rest insertion combined with high-frequency loading enhances osteogenesis. J Appl Physiol, Vol. 96, 1788–1793 (2004).
124. Yoshikawa T, Peel SA, Gladstone JR, Davies JE. Biochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation. Biomed Mater Eng, Vol. 7, 369–377 (1997).
125. Matsuda N, Morita N, Matsuda K, Watanabe M . Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun, Vol. 249, 350–354 (1998).
126. Billotte WG, Hofmann MC. Establishment of a shear stress protocol to study the mechanosensitivity of human primary osteogenic cells in vitro. Biomed Sci Instrum , Vol. 35:327–332 (1999).
127. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL. Cell differentiation by mechanical stress. FASEB J, Vol. 16, 270–272 (2002).
128. Kapur S, Baylink DJ, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone, Vol. 32, 241–251 (2003).
129. Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signalregulated kinase (ERK1/2) signaling pathway. J Biomech, Vol. 36, 1087–1096 (2003).
130. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem, Vol. 11, 173–186 (2001)
131. Symons MC. Radicals generated by bone cutting and fracture. Free Radic Biol Med, Vol.20, 831–835 (1996).
132. Chae HJ, Chae SW, Kang JS, Bang BG, Han JI, Moon SR, Park RK, So HS, Jee KS, Kim HM, Kim HR. Effect of ionizing radiation on the differentiation of ROS 17/2.8 osteoblasts through free radicals. J Radiat Res (Tokyo), Vol. 40, 323–335 (1999).
133. Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Huang HC, Sun YC, Yang YJ, Yang KD. Ras modulation of superoxide activates ERK-dependent angiogenic transcription (HIF-1alpha) and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem, Vol. 279, 10331–10337 (2004).
134. Mody N, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med, Vol. 31, 509–519 (2001).
135. Liebmann, J., Born, M., and Kolb-Bachofen V. Blue-light irradiation regulates proliferation and differentiation in human skin cells. J Invest Dermatol 130, 259, (2010).
136. Oron, U. Photoengineering of tissue repair in skeletal and cardiac muscles. Photomed Laser Surg, Vol. 24, 111 (2006).
137. Hogset, A., Engesaeter, B.O., Prasmickaite, L., Berg, K., Fodstad, O., and Maelandsmo, G.M. Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. Cancer Gene Ther, Vol. 9, 365 (2002).
138. Prasmickaite, L., Hogset, A., Olsen, V.M., Kaalhus, O., Mikalsen, S.O., and Berg, K. Photochemically enhanced gene transfection increases the cytotoxicity of the herpes simplex virus thymidine kinase gene combined with ganciclovir. Cancer Gene Ther, Vol. 11, 514 (2004).
139. Chen, A., Du, L., Xu, Y., Chen, L., and Wu, Y. The effect of blue light exposure on the expression of circadian genes: bmal1 and cryptochrome 1 in peripheral blood mononuclear cells of jaundiced neonates Pediatr Res, Vol. 58, 1180 (2005).
140. Gradinaru, V., and Mogri, M., Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science, Vol. 324, 354 (2009).
141. Zhang, F., Prigge, M., Beyriere, F., Tsunoda, S.P., Mattis, J., Yizhar, O., Hegemann, P., and Deisseroth K. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci, Vol. 11, 631 (2008).
142. Boyden, E.S., Zhang, F., Bamberg, E., Tsunoda, S.P., Mattis, J., Yizhar, O., Hegemann, P., and Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, Vol. 8, 1263 (2005).
143. Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P.G., Bamberg, E., Nagel, G., and Gottschalk, A., Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature, Vol. 446, 633 (2007).
144. Gradinaru, V., Thompson, K.R., and Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol, Vol. 36, 129 (2008).
145. On line resources︰http://www.aurorahealthcare.org/yourhealth/healthgate/getcontent.asp?URLhealthgate=%22101222.html%22
146. Rodda DJ, Chew JL, Lim LH et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem, Vol. 280, 24731-37 (2005).
147. Rodriguez-Piza I, Richaud-Patin Y, Vassena R et al. Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells, Vol. 28, 36-44 (2010).
148. Hakala H, Rajala K, Ojala M et al. Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines. Tissue Eng Part A, Vol. 15, 1775-1785 (2009).
149. Kumar A, Salimath BP, Stark GB et al. Platelet-derived growth factor receptor signaling is not involved in osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A, Vol. 16, 983-993 (2010).
150. Binulal NS, Deepthy M, Selvamurugan N et al. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering response to osteogenic regulators. Tissue Eng Part A, Vol. 16, 393-404 (2010).
151. Luo X, Chen J, Song WX et al. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Invest, Vol. 88, 1264-1277 (2008).
152. Rinalducci S, Pedersen JZ, Zolla L. Generation of reactive oxygen species upon strong visible light irradiation of isolated phycobilisomes from Synechocystis PCC 6803. Biochim Biophys Acta, Vol. 1777, 417-424 (2008).
153. Lockwood DB, Wataha JC, Lewis JB et al. Blue light generates reactive oxygen species (ROS) differentially in tumor vs. normal epithelial cells. Dent Mater, Vol. 21, 683-688 (2005).
154. Rhee SG: Redox signaling: hydrogen peroxide as intracellular messenger. Experimental and Molecular Medicine, Vol 31, 53-59 (1999).
155. Valko M, Leibfritz D, Moncol J et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, Vol 39, 44-84 (2007).
156. Ji AR, Ku SY, Cho MS et al. Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med, Vol. 42, 175-186 (2010).
157. Song H, Cha MJ, Song BW et al. Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells, Vol. 28, 555-563 (2010).
158. Funk JO, Kruse A, Neustock P et al. Helium-neon laser irradiation induces effects on cytokine production at the protein and the mRNA level. Exp Dermatol, Vol. 2:75-83 (1993).
159. Yu HS, Chang KL, Yu CL et al. Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol, Vol. 107, 593-596 (1996).
160. Miyata H, Genma T, Ohshima M et al. Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation of cultured human dental pulp cells by low-power gallium-aluminium-arsenic laser irradiation. Int Endod J, Vol. 39, 238-244 (2006).
161. Shefer G, Oron U, Irintchev A et al. Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol, Vol. 187, 73-80 (2001).
162. Lubart R, Eichler M, Lavi R et al. Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg (2005), Vol. 23, 3-9 (2005).
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2011-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明