博碩士論文 983204040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:52.15.71.15
姓名 黃緬雄(Mian-Shiung Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討黃豆粉與溫度對Aspergillus terreus利用 酵素糖化稻稈生產衣康酸之影響
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 衣康酸 (Itaconic acid) 由於其具有特殊結構特性,因此被廣泛應用於民生工業上,用來製造人造纖維、樹酯及其他合成材料,甚至具有取代石化原料的潛力。Aspergillus terreus是目前已知具有較高衣康酸產率的真菌,由於過去主要針對衣康酸代謝途徑、pH值、通氣量及反應器等進行探討,但對於中高溫度以及農業廢棄物糖化還原糖之利用的研究較少,因此為本研究之重點。

首先以具有能生產較高活性之酵素的真菌,Trichoderma reesei利用經過鹼處理之稻稈作為誘導基質,在30°C下生產纖維水解酵素,相較於豆渣,以豆粉作為氮源能得到較高活性之酵素,得到內切、外切型纖維酵素及β-glucosidase酵素活性各為0.193 IU/mL、0.152 IU/mL、0.146 IU/mL,filter paper activity為0.754 FPU/mL。接著在稻稈糖化階段,若增加稻稈添加量則會使糖化效率降低,在50°C下糖化20、40及60 g/L的稻稈,得到各別19.14、32.88及45.13 g/L的還原糖,轉化率各為84.6、73.3及66.6%。

在衣康酸發酵實驗部分,若接菌量從10%增加至30%,衣康酸產率能夠被提高至0.826 g/L day,約3.4倍。相較於 (NH4)2SO4與CSL,以豆粉作為氮源,在40°C下進行衣康酸發酵能得到較高的衣康酸轉化率,在第8天能得到0.22 g/g的單位基質衣康酸轉化率 (Yp/s),一康酸產率為1.28 g/L day。而初始葡萄糖為50 g/L時,若將豆粉濃度從2.1g/L減半至1.05g/L,葡萄糖與豆粉比率為47.62,衣康酸產率能被提高至1.57 g/L day,約提高22.7%,Yp/s為0.3 g/g。

最後透過限制氮源,以32 g/L糖化還原糖及0.67 g/L豆粉進行衣康酸發酵,得到菌量為6.16 g/L,衣康酸產率為0.4 g/L day,雖然相較於葡萄糖控制組略低,但還原糖也能有效的被利用。

摘要(英) Itaconic acid (IA) has been declared to be one of the most promising and flexible building blocks derived from biomass, it is a monomer for the manufacturing of synthetic fibers, synthetic resins, plastics, rubbers or other polymeric materials.

A. terreus strains can achieve high product yields of IA by utilizing glucose. For several decades, some studies focus on metabolic pathway for IA production, pH, oxygen supply and bioreactor. However, the investigation of mesophilic or thermophilic temperature and utilizing rice straw for IA fermentation is deficient.

At present, T. reesei has been reported as the excellent cellulose producer. So first, the rice straw by alkaline pretreatment and soybean powder is used for cellulase production by T. reesei Rut C-30 at 30°C, the crude enzyme with the highest activity of CMCase, Avicelase and β-glucosidase was 0.193, 0.152 and 0.146 IU/mL, and the filter paper activity was 0.754 FPU/mL. The crude enzyme is used for saccharification of 20、40 and 60 g/L rice straw at 50°C, it obtains 19.14、32.88 and 45.13 g/L reducing sugar. The saccharification efficiency is 84.6、73.3 and 66.6% respectively.

In IA fermentation, the inoculum from 10 to 30% directly increases the IA productivity 3.4 times, it were obtained 0.826 g/L day. Using soybean powder as nitrogen source is better than (NH4)2SO4 and CSL at 40°C, the higher IA productivity and Yp/s, can be obtained 0.22 g IA/g glucose and 1.28 g/L day, respectively. If using half of 2.1 g/L soybean powder, the IA productivity can be increased to 1.57 g/L day and Yp/s is 0.3 g/g. At last, 32 g/L reducing sugar and 0.67 g/L soybean powder is used for IA production by nitrogen limitation, the IA productivity is 0.4 g/L day, it slightly less than the control group of glucose.

關鍵字(中) ★ 衣康酸
★ 纖維水解酵素
★ 糖化
★ 稻稈
★ 黃豆
關鍵字(英) ★ Itaconic acid
★ Cellulase
★ Saccharification
★ Rice straw
★ soybean
論文目次 摘要 I

ABSTRACT II

目錄 III

圖目錄 VII

表目錄 X

第一章、緒論 1

1-1 研究動機 1

1-2 研究目的 2

第二章、文獻回顧 3

2-1 衣康酸 3

2-1.1 衣康酸簡介 3

2-1.2 衣康酸來源 3

2-1.3 衣康酸之應用 5

2-1.4 衣康酸之市場現況 6

2-1.5 衣康酸發酵問題 7

2-2 木質纖維素水解 10

2-2.1 木質纖維素簡介 10

2-2.2 木質纖維素前處理 13

2-2.3 纖維水解酵素簡介 16

2-2.4 纖維水解酵素之來源 18

2-2.5 纖維素糖化之環境參數 19

2-3 真菌 20

2-3.1 真菌簡介 20

2-3.2 真菌分類 20

2-3.3 土麴黴 (Aspergillus terreus) 簡介 21

2-3.4 土麴黴發酵生產衣康酸之生物合成途徑 23

2-3.5 裡氏木黴 (Trichoderma reesei) 簡介 25

2-4影響衣康酸發酵之因素 26

2-4.1 培養基組成 26

2-4.2 溫度 28

2-4.3 pH值 28

2-4.4 通氣量及攪拌速率 29

第三章、實驗材料與方法 30

3-1 實驗規劃 30

3-2 實驗材料 32

3-2.1 實驗菌株 32

3-2.2 實驗藥品 33

3-2.3 實驗儀器及設備 35

3-3 實驗方法 37

3-3.1 稻稈前處理 37

3-3.2 菌種保存 38

3-3.3 培養基組成 39

3-3.4 纖維水解酵素生產 42

3-3.5 糖化稻稈累積還原糖 43

3-3.6 衣康酸發酵實驗 44

3-3.7 糖化及衣康酸發酵最適化操作 45

3-4 分析方法 47

3-4.1 發酵液分析流程圖 47

3-4.2 菌重分析 47

3-4.3 還原糖定量分析 48

3-4.4 酵素活性分析 49

3-4.5 糖化效率計算公式 50

3-4.6 衣康酸濃度分析 50

第四章、結果與討論 53

4-1纖維水解酵素生產 53

4-1.1 種瓶碳源實驗 53

4-1.2 豆渣及豆粉在酵素生產階段之比較 55

4-1.3 A. terreus酵素活性測試 57

4-2 糖化稻稈累積還原糖 58

4-2.1 糖化時機 58

4-2.2 不同pH對酵素糖化稻稈之影響 60

4-2.3 溫度對於糖化稻稈之影響 62

4-2.4 不同稻稈添加量之糖化效率 63

4-3 衣康酸發酵實驗 64

4-3.1 接種量對衣康酸發酵之影響 64

4-3.2 不同氮源對衣康酸發酵之影響 69

4-3.3 不同溫度對衣康酸發酵之影響 71

4-3.4 不同豆粉濃度對衣康酸發酵之影響 75

4-4 衣康酸發酵測試 78

4-4.1 還原糖利用之衣康酸發酵測試 78

4-4.2 還原糖利用及限制氮源之衣康酸發酵測試 80

第五章、結論與建議 83

5-1 結論 83

5-2 建議 85

參考文獻 86

附錄一 91

參考文獻 1. Baup, S., Ueber eine neue Pyrogen-Citronensäure, und über Benennung der Pyrogen-Säuren überhaupt. Annalen der Pharmacie, 1836. 19(1): p. 29-38.

2. Lin, Y.-H., Studies on itaconic acid production in Aspergillus terreus. 2004.

3. Klement, T. and J. Buchs, Itaconic acid--a biotechnological process in change. Bioresour Technol, 2013. 135: p. 422-31.

4. Kinoshita, K., Ueber eine neue Aspergillus-Art, Aspergillus itaconicus nov. spec. Shokubutsugaku Zasshi, 1931. 45(530): p. 45-60.

5. Okabe, M., et al., Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol, 2009. 84(4): p. 597-606.

6. Roehr, M. and C.P. Kubicek, Further Organic Acids, in Biotechnology. 2008, Wiley-VCH Verlag GmbH. p. 363-379.

7. Kobayashi, T. and I. Nakamura, Dynamics in Mycelial Concentration of Aspergillus terreus K 26 in Steady State of Continuous Culture. Journal of fermentation technology., 1966. 44(6): p. 264-274.

8. Willke, T. and K.D. Vorlop, Biotechnological production of itaconic acid. Applied Microbiology and Biotechnology, 2001. 56(3-4): p. 289-295.

9. Werpy, T.A., J.E. Holladay, and J.F. White, Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. 2004. p. Medium: ED; Size: PDFN.

10. Yahiro, K., et al., Breeding of Aspergillus terreus mutant TN-484 for itaconic acid production with high yield. Journal of Fermentation and Bioengineering, 1995. 79(5): p. 506-508.

11. Kautola, H., et al., Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnology Letters, 1985. 7(3): p. 167-172.

12. Li, A., et al., A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol, 2011. 48(6): p. 602-11.

13. Kobayashi, T., Production of itaconic acid from wood waste. Process biochemistry, 1978. 13(5): p. 15-22.

14. Klement, T., et al., Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact, 2012. 11: p. 43.

15. Petruccioli, M., V. Pulci, and F. Federici, Itaconic acid production by Aspergillus terreus on raw starchy materials. Letters in Applied Microbiology, 1999. 28(4): p. 309-312.

16. Rocha, N.R.d.A.F., et al., Ethanol production from agroindustrial biomass using a crude enzyme complex produced by Aspergillus niger. Renewable Energy, 2013. 57: p. 432-435.

17. Sanchez, C., Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv, 2009. 27(2): p. 185-94.

18. Malcolm Brown Jr, R., I.M. Saxena, and K. Kudlicka, Cellulose biosynthesis in higher plants. Trends in Plant Science, 1996. 1(5): p. 149-156.

19. Taiz, L. and E. Zeiger, Cell walls: structure, biogenesis, and expansion, in Plant Physiology. 1998, Sinauer Associates: Sunderland, MA.

20. Comstock, M.J. and M.J. Comstock, Enzymatic Conversion of Biomass for Fuels Production, Copyright, 1994 Advisory Board, Foreword. 1994. 566: p. i-vi.

21. Duff, S.J.B. and W.D. Murray, Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology, 1996. 55(1): p. 1-33.

22. Mosier, N., et al., Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 2005. 96(6): p. 673-86.

23. Balat, M., Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 2011. 52(2): p. 858-875.

24. 施智雄, 利用鹼和Aspergillus niger處理稻稈以提升甲烷生產於厭氧共發酵系統, in 化學工程與材料工程學系. 2013, 國立中央大學: 桃園市. p. 108.

25. Sadhu, S. and T.K. Maiti, Cellulase production by bacteria: a review. British Microbiology Research Journal, 2013. 3(3): p. 235-258.

26. Bhat, M.K. and S. Bhat, Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 1997. 15(3–4): p. 583-620.

27. Wen, Z., W. Liao, and S. Chen, Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochemistry, 2005. 40(9): p. 3087-3094.

28. Chen, M., J. Zhao, and L. Xia, Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers, 2008. 71(3): p. 411-415.

29. Sukumaran, R.K., et al., Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 2009. 34(2): p. 421-424.

30. Bansal, N., et al., Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag, 2012. 32(7): p. 1341-6.

31. Waeonukul, R., et al., Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii beta-glucosidase. Bioresour Technol, 2012. 107: p. 352-7.

32. Schlochtermeier, A., et al., The gene encoding the cellulase (Avicelase) Cell from Streptomyces reticuli and analysis of protein domains. Molecular Microbiology, 1992. 6(23): p. 3611-3621.

33. Juhász, T., K. Kozma, and K. Réczey, Production of β-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technology and Biotechnology, 2003. 41(1): p. 49-53.

34. Alexander, M., Introduction to soil microbiology. Introduction to soil microbiology., 1977(Ed. 2).

35. Schinner, F. and W. von Mersi, Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biology and Biochemistry, 1990. 22(4): p. 511-515.

36. Li, C., et al., Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J Biotechnol, 2013. 168(4): p. 470-7.

37. 吳國芳 and 馮志堅, 植物學. 2000, 高等教育出版社.

38. 廖偉修, 探討光品質對於 Aspergillus terreus 生產衣康酸之影響, in 化學工程與材料工程學系. 2011, 國立中央大學: 桃園市. p. 1-75.

39. Dictionary of the Fungi. 9th ed, ed. P. Kirk, P. Cannon, and J. Stalpers. 2001: CAB International.

40. Shimi, I. and M. Nour El Dein, Biosynthesis of itaconic acid by aspergillus terreus. Archiv für Mikrobiologie, 1962. 44(2): p. 181-188.

41. Calam, C.T., A.E. Oxford, and H. Raistrick, Studies in the biochemistry of micro-organisms: Itaconic acid, a metabolic product of a strain of Aspergillus terreus Thom. Biochemical Journal, 1939. 33(9): p. 1488-1495.

42. Bentley, R. and C.P. Thiessen, Biosynthesis of itaconic acid in Aspergillus terreus. II. Early stages in glucose dissimilation and the role of citrate. J Biol Chem, 1957. 226(2): p. 689-701.

43. Bonnarme, P., et al., Itaconate biosynthesis in Aspergillus terreus. Journal of Bacteriology, 1995. 177(12): p. 3573-8.

44. Reese, E.T., History of the cellulase program at the U. S. Army Natick Development Center. Journal Name: Biotechnol. Bioeng. Symp.; (United States); Journal Volume: 6, 1976: p. Medium: X; Size: Pages: 9-20.

45. Ahamed, A. and P. Vermette, Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal, 2008. 40(3): p. 399-407.

46. Yahiro, K., et al., Efficient itaconic acid production from raw corn starch. Journal of Fermentation and Bioengineering, 1997. 84(4): p. 375-377.

47. Papagianni, M., F. Wayman, and M. Mattey, Fate and role of ammonium ions during fermentation of citric acid by Aspergillus niger. Appl Environ Microbiol, 2005. 71(11): p. 7178-86.

48. Haldenwang, L. and U. Behrens, Influence of phosphate concentration on the respiratory activity of Azotobacter vinelandii. Zeitschrift für allgemeine Mikrobiologie, 1983. 23(8): p. 491-494.

49. Riscaldati, E., et al., Effect of pH and stirring rate on itaconate production by Aspergillus terreus. Journal of Biotechnology, 2000. 83(3): p. 219-230.

50. Kobayashi, T., G. Van Dedem, and M. Mooyoung, Oxygen transfer into mycelial pellets. Biotechnology and Bioengineering, 1973. 15(1): p. 27-45.

51. Pfeifer, V.F., C. Vojnovich, and E.N. Heger, ITACONIC ACID BY FERMENTATION WITH ASPERGILLUS TERREUS. Industrial & Engineering Chemistry, 1952. 44(12): p. 2975-2980.

52. Gyamerah, M.H., Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Applied Microbiology and Biotechnology, 1995. 44(1-2): p. 20-26.

53. Roukas, T., Influence of impeller speed on citric acid production and selected enzyme activities of the TCA cycle. Journal of Industrial Microbiology, 1991. 7(3): p. 221-225.

54. He, Y.F., et al., Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy & Fuels, 2008. 22(4): p. 2775-2781.

55. 郭以謙, Trichoderma reesei與Aspergillus niger共醣化稻稈及Saccharomyces cerevisiae生產生質酒精之研究, in 化學工程與材料工程學系. 2014, 國立中央大學: 桃園市. p. 89.

56. Kataria, R. and S. Ghosh, Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresour Technol, 2011. 102(21): p. 9970-5.

57. 黃柏傑, 探討以Aspergillus niger分解稻桿及Saccharomyces cerevisiae生產生質酒精之研究, in 化學工程與材料工程學系. 2013, 國立中央大學: 桃園市.

58. Miller, G.L., Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. 1959.

59. GHOSE, T.K., Measurement of cellulase activities. 1987.

60. Selig, M., N. Weiss, and a.Y. Ji, Enzymatic Saccharification of Lignocellulosic Biomass. 2008, National Renewable Energy Laboratory.

61. Lai, L.S., C.S. Hung, and C.C. Lo, Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng, 2007. 104(1): p. 9-13.

62. Anderson, R.L. and W.J. Wolf, Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. Journal of nutrition, 1995. 125(3): p. 581S.

63. Hafez, Y., Nutrient composition of different varieties and strains of soybean. Nutrition reports international, 1983. 28(6): p. 1197-1206.

指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明