博碩士論文 983204041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.230.154.160
姓名 林鴻宇(Hong-yu Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用
(The etchant screen effect of sapphire surface atoms on wet etching pattern formation behavior and application)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
★ 覆晶凸塊封裝之兩界面反應交互作用研究★ 金矽及金錫晶圓鍵合技術應用在發光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究主題為藍寶石基板在無黃光微影下經過濕蝕刻後圖案生成的行為和其應用。在第一部分,使用預溶鋁離子於蝕刻液中製程製作圖案化藍寶石基板。利用MOCVD成長GaN薄膜於藍寶石基板上,利用XRD和Raman量測,經過圖案化處理後的藍寶石基板可以降低GaN薄膜內的缺陷密度,裸晶輸出功率則會隨著覆蓋率增加而增加。在白光半球封裝後,不同圖案形貌基板的晶片有不一樣輸出功率的變化,經過分析後我們認為是因為封裝後晶片的光取出效率增益不同所造成,而增益程度隨著光形變寬而增加。
新型的無光罩圖案化藍寶石製程中,預溶鋁離子為其重要之參數。在第二部份,以不同預溶量觀察含水硫酸鋁和藍寶石基板的形貌。回饋到藍寶石基板上的含水硫酸鋁方塊隨著預溶粉末增加個數也隨之增加。然而過多的預溶量消耗過多的水分,因此回饋的含水硫酸鋁減少。藍寶石基板頂部的圖案受含水硫酸鋁成長型成四面金字塔型,底部則是形成具有弧面的三角錐。
從的文獻和研究成果中,濕蝕刻圖案化藍寶石基板的形貌普遍利用晶格面去推算,但無法解釋弧面三角錐的生成,我們從蝕刻圖案中利用利用表面原子與蝕刻分子的空間和電荷的屏蔽效應,解釋藍寶石基板經過濕蝕刻後圖案生成的行為。
摘要(英) This thesis is about sapphire pattern formation behavior and application of natural patterned sapphire substrate (n-PSS). In the 1st part, we pre-dissolving Al3+ into etching solution to produce PSS, and this process is named as novel n-PSS fabrication process. After MOCVD epitaxy on these sapphire substrates, we use XRD and Raman to analysis GaN thin film quality. We find out that GaN on patterned sapphire substrate (PSS) has lower dislocation density. The bare chip output power increases with pattern coverage. After white light package, LED chips have different output power drop ratio on different sapphire substrate. After analysis, we think that the drop ratio depends on the LEE enhancement by package, and the enhancement increases with broadness of bare chip emission pattern.
In novel n-PSS fabrication process, the pre-dissolving Al3+ is an important factor. In the 2nd part, we pre-dissolve different Al2O3 and observe the natural hard mask, alunogen and pattern morphology. The number of alunogen cubic increases with pre-dissolving amount. However, the alunogen amount decreases with pre-dissolving amount, because H2O is consumed too much. The morphology of region effected by alunogen is pyramid, and the base of pattern is curved triangular pyramid.
From reference and previous experiment result, PSS morphology is usually studied by crystallography, but it can’t explain the curved triangular pyramid formation. We use atomic model and etchant screen effect to explain the sapphire pattern formation behavior well.
關鍵字(中) ★ 圖案化藍寶石基板
★ 發光二極體
★ 濕式蝕刻
★ 螢光粉封裝
關鍵字(英) ★ patterned sapphire substrate
★ light emitting diode
★ weting etching
★ phosphor package
論文目次 Chapter 1 Introduction 1
1.1 Introduction and motivation 1
1.2 Background 4

Chapter 2 Experimental procedure 7
2.1 Experiment procedure for n-PSS fabrication 7
2.2 GaN thin film and LED chips performance analysis 9

Chapter 3 Application of n-PSS for GaN-based LEDs 10
3.1 Novel n-PSS fabrication process 10
3.2 n-PSS morphology and GaN film analysis 13
3.3 Bare chip and white light LED chips performance 16
3.4 LED chips performance after white light package and discussion 19

Chapter 4 Pre-dissolving effect on n-PSS morphology 26
4.1 Introduction 26
4.2 Experiment procedure 27
4.3 Result and discussion 28

Chapter 5 Etchant screen effect on pattern morphology 35
5.1 Introduction 35
5.2 Wet etching sapphire pattern morphology 36
5.3 Etchant screen effect on etching behavior 37
5.4 Etchant screen effect on pattern formation mechanism 40

Chapter 6 Conclusion 49

Reference 51
參考文獻 1. W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher and M. Stutzmann, Applied Physics Letters 68 (7), 970 (1996).
2. Y.-Y. Wong, E. Y. Chang, T.-H. Yang, J.-R. Chang, J.-T. Ku, M. K. Hudait, W.-C. Chou, M. Chen and K.-L. Lin, Journal of The Electrochemical Society 157 (7), H746 (2010).
3. J. Kim, H. Woo, K. Joo, S. Tae, J. Park, D. Moon, S. H. Park, J. Jang, Y. Cho, J. Park, H. Yuh, G. D. Lee, I. S. Choi, Y. Nanishi, H. N. Han, K. Char and E. Yoon, Scientific reports 3, 3201 (2013).
4. Y. J. Lee, H. C. Kuo, T. C. Lu, B. J. Su and S. C. Wang, Journal of The Electrochemical Society 153 (12), G1106 (2006).
5. H. Ju Kang, S. U. Cho, E. S. Kim, C.-S. Kim and M. Y. Jeong, Optical Engineering 52 (2), 023002 (2013).
6. S. H. Jung, K. M. Song, Y. S. Choi, H.-H. Park, H.-B. Shin, H. K. Kang and J. Lee, Journal of Nanomaterials 2013, 1-6 (2013).
7. M. Kuball, M. Benyoucef, B. Beaumont and P. Gibart, Journal of Applied Physics 90 (7), 3656 (2001).
8. R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck and S. Nakamura, Applied Physics Letters 96 (23), 231113 (2010).
9. H. Zhao, G. Liu and N. Tansu, Applied Physics Letters 97 (13), 131114 (2010).
10. J.-H. Cheng, Y. S. Wu, W.-C. Liao and B.-W. Lin, Applied Physics Letters 96 (5), 051109 (2010).
11. H.-Y. Shin, S. K. Kwon, Y. I. Chang, M. J. Cho and K. H. Park, Journal of Crystal Growth 311 (17), 4167-4170 (2009).
12. T. Sun, Z. Xu, H. Xu, W. Zhao, X. Wu, S. Liu, Z. Ma, J. He, S. Liu and J. Peng, Journal of Micromechanics and Microengineering 23 (12), 125002 (2013).
13. H.-C. Lin, H.-H. Liu, G.-Y. Lee, J.-I. Chyi, C.-M. Lu, C.-W. Chao, T.-C. Wang, C.-J. Chang and S. W. S. Chi, Journal of The Electrochemical Society 157 (3), H304 (2010).
14. H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng and G. Wang, Journal of Applied Physics 103 (1), 014314 (2008).
15. Y.-C. Chen, F.-C. Hsiao, B.-W. Lin, B.-M. Wang, Y. Sermon Wu and W.-C. Hsu, Journal of The Electrochemical Society 159 (6), D362 (2012).
16. N. T. T. Jiun Pyng You, and Frank G. Shi, OPTICS EXPRESS 18 (5), 6 (2010).
17. I. T. Ferguson, N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, B. Kulkarni, N. Narendran, S. P. DenBaars and J. C. Carrano, Proc. of SPIE 5187, 133-141 (2004).
18. D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu and M. H. Pan, Journal of The Electrochemical Society 153 (8), G765 (2006).
19. F. Dwikusuma, D. Saulys and T. F. Kuech, Journal of The Electrochemical Society 149 (11), G603 (2002).
20. H. Y. Lin, Y. J. Chen, C. L. Chang, X. F. Li, C. H. Kuo, S. C. Hsu and C. Y. Liu, Journal of Materials Research, 1-7 (2012).
21. H. Y. Lin, Y. J. Chen, C. C. Chang, X. F. Li, S. C. Hsu and C. Y. Liu, Electrochemical and Solid-State Letters 15 (3), H72 (2012).
22. P. T. Törmä, O. Svensk, M. Ali, S. Suihkonen, M. Sopanen, M. A. Odnoblyudov and V. E. Bougrov, Solid-State Electronics 53 (2), 166-169 (2009).
23. Y.-J. Chen, C.-H. Kuo, C.-J. Tun, S.-C. Hsu, Y.-J. Cheng and C.-Y. Liu, Japanese Journal of Applied Physics 49 (2), 020201 (2010).
24. S. R. Lee, A. M. West, A. A. Allerman, K. E. Waldrip, D. M. Follstaedt, P. P. Provencio, D. D. Koleske and C. R. Abernathy, Applied Physics Letters 86 (24), 241904 (2005).
25. A. Kontos, Y. Raptis, N. Pelekanos, A. Georgakilas, E. Bellet-Amalric and D. Jalabert, Physical Review B 72 (15) (2005).
26. J. S. Song, H. Rho, M. S. Jeong, J. W. Ju and I. H. Lee, Physical Review B 81 (23) (2010).
27. F. C. Wang, C. L. Cheng, Y. F. Chen, C. F. Huang and C. C. Yang, Semiconductor Science and Technology 22 (8), 896-899 (2007).
28. P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J. P. Ibbetson, S. P. DenBaars, U. K. Mishra and J. S. Speck, Applied Physics Letters 75 (12), 1706 (1999).
29. K.-C. Shen, D.-S. Wuu, C.-C. Shen, S.-L. Ou and R.-H. Horng, Journal of The Electrochemical Society 158 (10), H988 (2011).
30. Y. Arai. (Chapman & Hall, New Yoek, 1996).
31. Y. C. Lin, Y. S. Liu, C. L. Chang and C. Y. Liu, Electronic Materials Letters 9 (4), 441-444 (2013).
32. I. Ahmad, M. Holtza, N. N. Faleev, and H. Temkin, Journal of Applied Physics 95 (4), 1692 (2004).
33. C.-H. C. Ya-Ju Lee, Chih Chun Ke, Po Chun Lin, Tien-Chang Lu, Hao-Chung Kuo, Senior Member, IEEE, and Shing-Chung Wang, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 15 (4), 7 (2009).
34. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto and M. Ikeda, Applied Physics Letters 76 (23), 3421 (2000).
35. C. Xu, T. Yu, J. Yan, Z. Yang, X. Li, Y. Tao, X. Fu, Z. Chen and G. Zhang, physica status solidi (c) 9 (3-4), 757-760 (2012).
36. S.-F. Yu, S.-P. Chang, S.-J. Chang, R.-M. Lin, H.-H. Wu and W.-C. Hsu, Journal of Nanomaterials 2012, 1-6 (2012).
37. G. O. M. Regina Mueller-Mach, Michael R. Krames, and Troy Trottier, IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS 8 (2), 7 (2002).
38. S. J. Lee, APPLIED OPTICS 40 (9), 11 (2001).
39. V. V. M. L. A. Marasina, I. G. Pichugun, P. Prentky Crystal Res. & Technol. 17 (3), 7 (1982).
40. E. R. D. L. A. L. V. Pishchik, Sapphire Material, Manufacturing, Applications. (2009).
41. B. d. Darwent, NSRDA 31, 52 (1970).
42. G. Dienes, D. Welch, C. Fischer, R. Hatcher, O. Lazareth and M. Samberg, Physical Review B 11 (8), 3060-3070 (1975).
指導教授 劉正毓(Cheng-yi Liu) 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明