博碩士論文 983204043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.221.53.209
姓名 林奕辰(Yi-Chen Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Biomimetic Renal Stone Formation in the Initial State: Calcium Oxalate/ Calcium Phosphate Crystallization in Various Urine-like Solutions, Time Points, and pH Values at 37 ºC
(仿效生物腎結石於初始狀態中形成:在不同的仿尿溶液、時間及pH值於37 ºC中結晶草酸鈣/磷酸鈣)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類中的腎結石是非常常見的生物礦化例子。全世界有5%的人口受腎石所苦。在人體中,有不同種類腎結石: 如含鈣腎結石,鳥糞腎結石(六水磷酸銨鎂水合物),尿酸腎結石,以及其他腎結石(胱氨酸,黃嘌呤等),但又以含鈣腎結石最常發生在人體中。含鈣腎結石是由主要成分的草酸鈣和次要成分的磷酸鈣所組成。而尿酸在腎結石組成中,是一個主要的有機物質。經過廣泛文獻閱覽後,在腎結石的形成,許多人們都把焦點放在草酸鈣結晶。相對而言,很少研究調查磷酸鈣結晶。因此,在本文中,主要有三個重要的目標來找出在人體中,腎結石於初始狀態中的形成機制。第一,利用反溶劑法來建立尿酸的工程資料庫,如:溶解度,晶體外貌和多型晶體。第二,清楚地辨別不同的草酸鈣水合物。第三,利用模仿尿液篩選實驗和流量實驗,找出是什麼因素於在初始狀態中,導致腎石形成。藉著利用這些資料可以更明確的加以了解腎結石在人體中的起因。除此之外,我們還發現:
(1)在文獻中針對高鈣尿症和雙水草酸鈣的簡單關聯,有待對雙水草酸鈣水合物在人體內的形成,有更進一步的了解。
(2)鎂離子可減少雙水草酸鈣晶體的形成,誘發和形成穩定的二水磷酸氫鈣。
(3)檸檬酸會與鈣鍵結而形成可溶性錯合物,因此,減少自由的鈣離子而減少草酸鈣形成。
(4)非晶型磷酸鈣、草酸鈣單水合物和雙水磷酸氫鈣水合物會做為基板,在之後的階段,單水草酸鈣水合物,雙水磷酸氫鈣水合物和羥基磷灰石於基板上以緩慢生長成球晶,並且非晶型磷酸鈣、草酸鈣單水合物和雙水磷酸氫鈣水合物最終成為腎結石的核心。
(5)雙水磷酸氫鈣水合物和非晶型磷酸鈣在短時間內,可以很容易地成長到約50微米的聚集體,因此磷酸鈣在生理的重要性應該比草酸鈣更值得關注!
摘要(英) Renal stone in humans is a very commonly seen example of biomineralization. It affects up to 5 percent of the population of the world. Various types of renal stones occur in humans: calcium-containing stone, struvite (magnesium ammonium phosphate hexahydrate) stone, uric acid stone, and other (cystine, xanthine, etc) stone, but calcium-containing stone are the most common in humans. Calcium-containing stone are composed of calcium oxalate as the major form and calcium phosphate as the minor form. Uric acid is also a dominant organic material in renal stone composition. After studying an extensive of references, in renal stone formation much attention has been paid to the crystallization of calcium oxalate. Relatively few studies have investigated the crystallization of calcium phosphate. So, three important goals in this thesis are performed to find out the mechanism of renal stone formation in the initial state in humans. Firstly, an engineering data bank of solubility, crystal habits and polymorphism by anti-solvent for uric acid was established. Secondly, calcium oxalate phases was clearly distinguished. Thirdly, using urine-like screening experiments and flow experiments found out what factors cause the renal stone formation in the initial state. By answering these questions, we will more specific understand biomineration in humans. Besides, we also found:
(1) A simple direct association between hypercalciuria and COD in the literature might have only told part of the story until the conditions that produced COD in vivo were better understood.
(2) Magnesium ions could minimize the formation of COD crystals, induce and stabilize the formation of dicalcium phosphate dihydrate or brushite (DCPD).
(3) Citrate was bound to calcium to form a soluble complex, therefore, decreased available free calcium ions for calcium oxalate formation.
(4) ACP, COM and DCPD would then serve as a substrate for the relatively slow layered spherulitic growth of COM, DCPD and hydroxyapatite in a later stage and eventually became the kernel of a urinary stone.
(5) The physiological importance of the calcium phosphate phase should deserve more attentions than calcium oxalate since DCPD and ACP could easily grow into large clusters of about 50 μm within a short period of time!
關鍵字(中) ★ 腎石生成
★ 草酸鈣
★ 磷酸鈣
★ 非晶型磷酸鈣
★ 尿結石病
關鍵字(英) ★ amorphous calcium phosphate
★ calcium phosphate
★ calcium oxalate
★ Renal stone formation
★ urolithiasis
論文目次 摘要.....................................................i
Abstract ..............................................iii
Acknowledgement .........................................v
Table of Contents ......................................vi
List of Tables ........................................xii
List of Figures .......................................xiv
Chapter 1 Extensive Summary.........................1
1.1 Introducrtion...................................1
1.2 Brief Introduction of Uric Acid.................3
1.3 Brief Introduction of Calcium Oxalate/ Calcium
Phosphate in Renal Stone.................................4
1.4 Conceptual Framework............................5
1.5 References......................................7
Chapter 2 Analytical Instruments...................19
2.1 Introduction...................................19
2.2 Microscopic Methods............................23
2.2.1 Optical Microscopy (OM)......................23
2.2.2 Low Vacuum Scanning Electron Microscopy (LVSEM) & Energy-dispersive X-ray spectroscopy (EDS or EDX).....26
2.3 Thermal Analysis Methods.......................30
2.3.1 Differential Scanning Calorimetry (DSC)........30
2.3.2 Thermogravimetric Analysis (TGA)...............33
2.4 Spectroscopic Methods..........................36
2.4.1 Fourier Transform Infrared (FT-IR) Spectroscopy............................................36
2.4.2 Dynamic Light Scattering (DLS).................38
2.5 Crystallographic Analysis Methods..............43
2.5.1 Powder X-ray Diffractometry (PXRD).............43
2.6 Chemical Analysis..............................46
2.6.1 Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES)..................................46
2.7 Conclusions....................................51
2.8 References.....................................52
Chapter 3 Calcium Oxalate/ Calcium Phosphate Crystallization in vitro at Different Time and pH in Initial State...........................................56
3.1 Introduction...................................56
3.2 Materials......................................62
3.2.1 Chemical Reagents..............................62
3.2.2 Solvent........................................63
3.3 Experimental Methods...........................64
3.3.1 Urine-like Screening Experiments...............64
3.3.1.1 Case 1: Normal Condition.......................66
3.3.1.2 Case 2: Hypercalciuria Condition (3×Ca)........67
3.3.1.3 Case 3: Hyperoxaluria Condition (3×Ox).........68
3.3.2 Flow Experiment of Biomimetic Renal Tubule.....69
3.4 Analytical Measurements........................71
3.4.1 Dynamic Light Scattering (DLS).................71
3.4.2 Polarized Optical Microscopy (POM).............71
3.4.3 Low Vacuum Scanning Electron Microscopy (LVSEM) and Energy-dispersive X-ray Spectroscopy (EDS or EDX)...72
3.4.4Fourier Transform Infrared (FT-IR) Spectroscopy....73
3.4.5 Powder X-ray Diffractometry (PXRD).............73
3.4.6 Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)..................................74
3.5 Results and Discussion.........................75
3.5.1 Ca + Ox........................................82
3.5.2 Ca + Ox + Mg...................................87
3.5.3 Ca + Ox + citrate..............................89
3.5.4 Ca + Ox + phosphate and Synthetic urine........91
3.5.5 Ca + Ox + phosphate + citrate, Ca + Ox + phosphate + Mg and Ca + phosphate.......................94
3.5.6 Flow Experiment of Biomimetic Renal Tubule.....97
3.6 Conclusions....................................99
3.7 References....................................102
Chapter 4 Conclusions and Future Work.............117
4,1 Biomimetic Renal Stone Formation in the Initial State: Calcium Oxalate/ Calcium Phosphate Crystallization in vitro...............................................117
4.2 Uric Acid by Anti-Solvent Method and Characteristics of Calcium Oxalate.....................117
4.3 Future Work.....................................118
Appendix A FT-IR Spectra of Screening Experiment..119
Appendix B How to Make Sure Amorphous Calcium Phosphate?.............................................125
Appendix C Solubility, Crystal Habit and Polymorphism of Uric Acid by Anti-Solvent Method and Characteristics of Calcium Oxalate........................................130
C.1 Introduction..................................130
C.1.1 Solubility....................................132
C.1.2 Anti-solvent..................................133
C.1.3 Crystal Habit.................................135
C.1.4 Polymorphism..................................136
C.2 Materials.....................................138
C.2.1 Uric Acid.....................................138
C.2.2 Solvents......................................143
C.2.3 Calcium Oxalate...............................146
C.3 Experimental Section..........................149
C.3.1 Solubility Test...............................149
C.3.2 Anti-solvent Method...........................150
C.3.3 Calcium Oxalate Synthesis.....................153
C.4 Analytical Measurements.......................157
C.4.1 Optical Microscopy (OM).......................157
C.4.2 Scanning Electron Microscopy (SEM)............157
C.4.3 Differential Scanning Calorimetry (DSC).......158
C.4.4 Thermogravimetric Analysis (TGA)..............159
C.4.5 Fourier Transform Infrared (FT-IR)
Spectroscopy...........................................159
C.4.6 Powder X-ray Diffractometry (PXRD)............160
C.5 Results and Discussion........................161
C.5.1 Uric Acid.....................................161
C.5.1.1 Solubility..................................161
C.5.1.2 Crystal Habit...............................166
C.5.1.3 Polymorphism................................167
C.5.2 Calcium Oxalate...............................172
C.5.2.1 Crystal Habit...............................172
C.5.2.2 Polymorphism................................173
C.6 Conclusions...................................179
C.7 References....................................180
參考文獻 1. Lonsdale, K. Human Stones. Science 1968, 159 (3820), 1199-1207.
2. Parmar, M. S. Kidney Stone. Br. Med. J. 2004, 328(7453),1420-1424
3. Herring, L. C. Observations on the Analysis of Ten Thousand Urinary Calculi. J. Urol. 1962, 88 (4), 545-562.
4. Finlayson, B.; Reid, F. The Expectation of Free and Fixed Particles in Urinary Stone Disease. Investig. Urol. 1978, 15(6), 442-448.
5. Al-Atar, U.; Bokov, A. A.; Marshall, D.; Teichman, J. M. H.; Gates, B. D.; Ye, Z. G.; Branda, N. R. Mechanism of Calcium Oxalate Monohydrate Kidney Stones Formation: Layered Spherulitic Growth. Chem. Mater. 2010, 22 (4), 1318-1329.
6. Will, E. J.; Bijvoet, O. L. M.; Blomen, L. J. M. J.; van der Linden, H. Growth Kinetics of Calcium Oxalate Monohydrate. I. Method and Validation. J. Cryst. Growth 1983, 64 (2), 297-305.
7. Blomen, L. J. M. J.; Will, E. J.; Bijvoet, O. L. M.; van der Linden, H. Growth Kinetics of Calcium Oxalate Monohydrate. II. The Variation of Seed Concentration. J. Cryst. Growth 1983, 64 (2), 306-315.
8. Bijvoet, O. L. M.; Blomen, L. J. M. J.; Will, E. J.; van der Linden, H. Growth Kinetics of Calcium Oxalate Monohydrate. III. Variation of Solution. J. Cryst. Growth 1983, 64 (2), 316-325.
9. El-Shall, H.; Jeon, J. H.; Abdel-Aal, E. A.; Khan, S.; Gower, L.; Rabinovich, Y. A Study of Primary Nucleation of Calcium Oxalate Monohydrate: I. Effect of Supersaturation. Cryst. Res. Technol. 2004, 39 (3), 214-221.
10. El-Shall, H.; Jeon, J. H.; Abdel-Aal, E. A.; Khan, S.; Gower, L.; Rabinovich, Y. A Study of Primary Nucleation of Calcium Oxalate Monohydrate: II. Effect of Urinary Species. Cryst. Res. Technol. 2004, 39 (3), 222-229.
11. Hacherl, J. M.; Paul, E. L.; Buettner, H. M. Investigation of Imaging-Jet Crystallization with a Calcium Oxalate Model System. AIChE Journal 2003, 49 (9), 2352-2362.
12. Kok, D. J.; Papapoulos, S. E.; Bijvoet, O. L. M. Crystal Agglomeration is a Major Element in Calcium Oxalate Urinary Stone Formation. Kidney Int. 1990, 37 (1), 51-56.
13. Kok, D. J.; Papapoulos, S. E.; Blomen, L. J. M. J.; Bijvoet, O. L. M. Modulation of Calcium Oxalate Monohydrate Crystallization Kinetics In Vitro. Kidney Int. 1988, 34 (3), 346-350.
14. Štulajterová, R.; Medvecký, Ľ. Effect of Calcium Ions on Transformation Brushite to Hydroxyapatite in Aqueous Solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects 2008, 316 (1-3), 104-109.
15. Pak, C. Y. C.; Adams-Huet, B.; Poindexter, J. R.; Pearle, M. S.; Peterson, R. D.; Moe, O. W. Relative Effect of Urinary Calcium and Oxalate on Saturation of Calcium Oxalate. Kidney Int. 2004, 66 (5), 2032-2037.
16. Roger Qiu, S.; Wierzbicki, A.; Alan Salter, E.; Zepeda, S.; Orme, C. A.; Hoyer, J. R.; Nancollas, G. H.; Cody, A. M.; De Yoreo, J. J. Modulation of Calcium Oxalate Monohydrate Crystallization by Citrate through Selective Binding to Atomic Steps. J. Am. Chem. Soc. 2005, 127 (25), 9036-9044.
17. Tiselius, H. G.; Berg, C.; Fornander, A. M.; Nilsson, M. A. Effects of Citrate on the Different Phases of Calcium Oxalate Crystallization. Scanning Microsc. 1993, 7(1), 381-389.
18. Chow, K.; Dixon, J.; Gilpin, S.; Kavanagh, J. P.; Rao, P. N. Citrate Inhibits Growth of Residual Fragments in an In Vitro Model of Calcium Oxalate Renal Stones. Kidney Int. 2004, 65 (5), 1724-1730.
19. Wang, L.; Zhang, W.; Roger Qiu, S.; Zachowicz, W. J.; Guan, X.; Tang, R.; Hoyer, J. R.; De Yoreo, J. J.; Nancollas, G. H. Inhibition of Calcium Oxalate Monohydrate Crystallization by the Combination of Citrate and Osteopontin. J. Cryst. Growth 2006, 291 (1), 160-165.
20. Weaver, M. L.; Roger Qiu, S.; Hoyer, J. R.; Casey, W. H.; Nancollas, G. H.; De Yoreo, J. J. Inhibition of Calcium Oxalate Monohydrate Growth by Citrate and the Effect of the Background Electrolyte. J. Cryst. Growth 2007, 306 (1), 135-145.
21. Kok, D.J.; Papapoulos, S. E.; Bijvoet, O. L. M. Excessive Crystal Agglomeration with Low Citrate Excretion in Recurrent Stone-Formers. The Lancet 1986, 327 (8489), 1056-1058.
22. Wierzbicki, A.; Sikes, C. S.; Sallies, J. D.; Madura, J. D.; Stevens, E. D.; Martin, K. L. Scanning Electron Microscopy and Molecular Modeling of Inhibition of Calcium Oxalate Monohydrate Crystal Growth by Citrate and Phosphocitrate. Calcif. Tissue Int. 1995, 56 (4), 297-304.
23. Hodgkinson, A. Relations between Oxalic Acid, Calcium, Magnesium and Creatinine Excretion in Normal Men and Male Patients with Calcium Oxalate Kidney Stones. Clin. Sci. Mol. Med. 1974, 46 (3), 357-367.
24. Wunderlich, W. Aspects of the Influence of Magnesium Ions on the Formation of Calcium Oxalate. Urol. Res. 1981, 9 (4), 157-161.
25. Lieske, J. C.; Farell, G.; Deganello, S. The Effect of Ions at the Surface of Calcium Oxalate Monohydrate Crystals on Cell-Crystal Interactions. Urol. Res. 2004, 32 (2), 117-123.
26. Li, S.; Sun, D. M.; Wu, Q. S.; Ding, Y. P. Simultaneous Synthesis of Different Structures of Calcium Oxalate by Living Bi-Template. Cryst. Res. Technol. 2008, 43 (7), 740-744.
27. Akin, B.; Öner, M.; Bayram, Y.; Demadis, K. D. Effects of Carboxylate-Modified, “Green” Inulin Biopolymers on the Crystal Growth of Calcium Oxalate. Cryst. Growth Des. 2008, 8 (6), 1997-2005.
28. Benítez, I. O.; Talham, D. R. Brewster Angle Microscopy of Calcium Oxalate Monohydrate Precipitation at Phospholipid Monolayer Phase Boundaries. Langmuir 2004, 20 (19), 8287-8293.
29. Backov, R.; Lee, C. M.; Khan, S.; Mingotaud, C.; Fanucci, G. E.; Talham, D. R. Calcium Oxalate Monohydrate Precipitation at Phosphatidylglycerol Langmuir Monolayers. Langmuir 2000, 16 (14), 6013-6019.
30. Sayan, P.; Sargut Titiz, S.; Kiran, B. Calcium Oxalate Crystallization in the Presence of Amino Acids, Proteins and Carboxylic Acids. Cryst. Res. Technol. 2009, 44 (8), 807-817.
31. Thurgood, L. A.; Cook, A. F.; Sørensen, E. S.; Ryall, R. L. Face-Specific Incorporation of Osteopontin into Urinary and Inorganic Calcium Oxalate Monohydrate and Dihydrate Crystals. Urol. Res. 2010, 38 (5), 357-376.
32. Weaver, M. L.; Qiu, S. R.; Friddle, R. W.; Casey, W. H.; De Yoreo, J. J. How the Overlapping Time Scales for Peptide Binding and Terrace Exposure Lead to Nonlinear Step Dynamics During Growth of Calcium Oxalate Monohydrate. Cryst. Growth Des. 2010, 10 (7), 2954-2959.
33. Letellier, S. R.; Lochhead, M. J.; Campbell, A. A.; Vogel, V. Oriented Growth of Calcium Oxalate Monohydrate Crystals Beneath Phospholipid Monolayers. Biochim. Biophys. Acta 1998, 1389 (1), 31-45.
34. Shirane, Y.; Kurokawa, Y.; Miyashita, S.; Komatsu, H.; Kagawa, S. Study of Inhibition Mechanisms of Glycosaminoglycans on Calcium Oxalate Monohydrate Crystals by Atomic Force Microscopy. Urol. Res. 1999, 27 (6), 426-431.
35. Jung, T.; Kim, W. S.; Choi, C. K. Crystal Structure and Morphology Control of Calcium Oxalate Using Biopolymeric Additives in Crystallization. J. Cryst. Growth 2005, 279 (1-2), 154-162.
36. Masui, M.; Suzuki, M.; Fujise, Y.; Kanayama, N. Calcium-Induced Changes in Chrondroitin Sulfate Chains of Urinary Trypsin Inhibitor. Biochim. Biophys. Acta 2001, 1546 (2), 261-267.
37. Honda, M.; Yoshioka, T.; Yamaguchi, S.; Yoshimura, K.; Miyake,O.; Utsunomiya, M.; Koide, T.; Okuyama, A. Characterization of Protein Components of Human Urinary Crystal Surface Binding Substance. Urol. Res. 1997, 25 (5), 355-360.
38. Hess, B.; Nakagawa, Y.; Coe, F. L. Inhibition of Calcium Oxalate Monohydrate Crystal Aggregation by Urine Proteins. AJP-Renal Physiol. 1989, 257 (1), F99-F106.
39. Deganello, S. The Interaction between Nephrocalcin and Tamm-Horsfall Proteins with Calcium Oxalate Dihydrate. Scanning Microsc. 1993, 7 (3), 1111-1118.
40. Grases, F.; Costa-Bauzá; March, J. G.; Masárová, L. Glycosaminoglycans, Uric Acid and Calcium Oxalate Urolithiasis. Urol. Res. 1991, 19(6), 375-380.
41. Grases, F.; Gil, J. J.; Conte, A. Glycosaminoglycans: Inhibition of Calcium Oxalate Crystalline Growth and Promotion of Crystal Aggregation. Colloids Surf. 1989, 36(1), 29-38.
42. Jung, T.; Sheng, X.; Choi, C. K.; Kim, W. S.; Wesson, J. A.; Ward, M. D. Probing Crystallization of Calcium Oxalate Monohydrate and the Role of Macromolecule Additives with In Situ Atomic Force Microscopy. Langmuir 2004, 20 (20), 8587-8596.
43. Ouyang, J. M.; Deng, S. P.; Zhong, J. P.; Tieke, B.; Yu, S. H. Crystallization of Calcium Oxalate Monohydrate at Dipalmitoylphosphatidylcholine Monolayers in the Presence of Chondroitin Sulfate A. J. Cryst. Growth 2004, 270 (3-4), 646-654.
44. Guo, S.; Ward, M. D.; Wesson, J. A. Direct Visualization of Calcium Oxalate Monohydrate Crystallization and Dissolution with Atomic Force Microscopy and the Role of Polymeric Additives. Langmuir 2002, 18 (11), 4282-4291.
45. Akyol, E.; Öner, M. Inhibition of Calcium Oxalate Monohydrate Crystal Growth Using Polyelectrolytes. J. Cryst. Growth 2007, 307 (1), 137-144.
46. Koide, T.; Takemoto, M.; Itatani, H.; Takaha, M.; Sonoda, T. Urinary Macromolecular Substances as Natural Inhibitors of Calcium Oxalate Crystal Aggregation. Invest. Urol. 1981, 18 (5), 382-386.
47. Angell, A. H.; Resnick, M. I. Surface Interaction Between Glycosaminoglycans and Calcium Oxalate. J. Urol. 1989, 141 (5), 1255-1258.
48. Fellström, B.; Danielson, B. G.; Ljunghall, S.; Wikström, B. Crystal Inhibition: The Effects of Polyanions on Calcium Oxalate Crystal Growth. Clin. Chim. Acta 1986, 158 (3), 229-235.
49. Rodgers, A. L.; Ball, D.; Harper, W. Urinary Macromolecules Are Promoters of Calcium Oxalate Nucleation in Human Urine: Turbidimetric Studies. Clin. Chim. Acta 1993, 220(2), 125-134.
50. Wesson, J. A.; Worcester, E. M.; Wiessner, J. H.; Mandel, N. S. Control of Calcium Oxalate Crystal Structure and Cell Adherence by Urinary Macromolecules. Kidney Int. 1998, 53 (4), 952-957.
51. Bouropoulos, C.; Vagenas, N.; Klepetsanis, P.; Stavropoulos, N.; Bouropoulos, N. Growth of Calcium Oxalate Monohydrate on Uric Acid Crystals at Sustained Supersaturation. Cryst. Res. Technol. 2004, 39 (8), 699-704.
52. Streit, J.; Tran-Ho, L.-C.; Königsberger, E. Solubility of the Three Calcium Oxalate Hydrate in Sodium Chloride Solutions and Urine-Like Liquors. Monatshefte für Chemie 1998, 129 (12), 1225-1236.
53. Opalko, F. J.; Adair, J. H.; Khan, S. R. Heterogeneous Nucleation of Calcium Oxalate Trihydarte in Artificial Urine by Constant Composition. J. Cryst. Growth 1997, 181 (4), 410-417.
54. Laube, N.; Pullmann, M.; Hergarten, S.; Hesse, A. Influence of Urinary Stones on the Composition of a 24-hour Urine Sample. Clinic. Chem. 2003, 49 (2), 281-285.
55. Callejas-Fernández, J.; Martínez-García, R.; Hidalgo-Alvarez, R.; de las Nieves, F. J. Effect of Some Inhibitors on the Zeta-Potential of Calcium Oxalate Monohydrate Particles. Prog. Colloid Polym. Sci. 1993, 93, 210-215.
56. Tiselius, H. G.; Fornander, A. M.; Nilsson, M. A. Inhibition of Calcium Oxalate Crystallization in Urine. Urol. Res. 1987, 15(2), 83-86.
57. Sommer, A. P.; Kajander, E. O. Nanobacteria-Induced Kidney Stone Formation: Novel Paradigm Based on the FERMIC Model. Cryst. Growth Des. 2002, 2(6), 563-565.
58. Wang, L.; Nancollas, G. H. Calcium Orthophosphates: Crystallization and Dissolution. Chem. Rev. 2008, 108 (11), 4628-4669.
59. Tiselius, H. G.; Larsson, L. Calcium Phosphate: An Important Crystal Phase in Patients with Recurrent Calcium Stone Formation? Urol. Res. 1993, 21 (3), 175-180.
60. Chou, Y. H.; Wang, H. S.; Li, C. C. Clinical analysis of patients with urinary calcium phosphate stones. J. Taiwan Urol. Assoc. 2009, 20 (1), 21-24.
61. Göbel, C.; Simon, P.; Buder, J.; Tlatlik, H.; Kniep, R. Phase Formation and Morphology of Calcium Phosphate-Gelatine-Composites Grown by Double Diffusion Technique: The Influence of Fluoride. J. Mater. Chem. 2004, 14(14), 2225-2230.
62. Joshi, V. S.; Joshi, M. J. FTIR Spectroscopic, Thermal and Growth Morphological Studies of Calcium Hydrogen Phosphate Dihydrate Crystals. Cryst. Res. Technol. 2003, 38 (9), 817-821.
63. Zahn, D. Mechanisms of Calcium and Phosphate Ion Association in Aqueous Solution. Z. Anorg. Allg. Chem. 2004, 630 (10), 1507-1511.
64. Grases, F.; Söhnel, O.; Vilacampa, A. I.; March, J. G. Phosphates Precipitating from Artificial Urine and Fine Structure of Phosphate Renal Calculi. Clin. Chim. Acta 1996, 244 (1), 45-67.
65. Bigi, A.; Falini, G..; Foresti, E.; Gazzano, M.; Ripamonti, A.; Roveri, N. Magnesium Influence on Hydroxyapatite Crystallization. J. Inorg. Biochem. 1993, 49 (1), 69-78.
66. Ebisuno, S.; Kohjimoto, Y.; Yoshida, T.; Ohkawa, T. Effect of Urinary Macromolecules on Aggregation of Calcium Oxalate in Recurrent Calcium Stone Formers and Healthy. Urol. Res. 1993, 21 (4), 265-268.
67. Cody, A. M.; Cody, R. D. Calcium Oxalate Trihydrate Phase Control by Structurally-Specific Carboxylic Acids. J. Cryst. Growth 1994, 135 (1-2), 235-245.
68. Wang, H.; Lee, J.-K.; Moursi, A.; Lannutti, J. J. Ca/P Ratio Effects on the Degradation of Hydroxyapatite In Vitro. J. Biomed. Mater. Res. Part A 2003, 67A (2), 599-608.
69. Boistelle, R.; Lopez-Valero, I.; Abbona, F. Crystallization of Calcium Phosphate in the Presence of Magnesium. Nephrologie 1993, 14 (6), 265-269.
70. Meyer, J. L.; Nancollas, G. H. The Effect of pH and Temperature on the Crystal Growth of Hydroxyapatite. Archs. Oral Biol. 1972, 17 (11), 1623-1627.
71. Shi Y.; Evans J. E.; Rock K.L. Molecular Identification of A Danger Signal That Alerts The Immune System to Dying Cells, Nature, 2003, 425(6957), 516-521.
72. Prien E. L. Studies in Urolithiasis. III. Physicochemical Principles in Stone Formation and Prevention, J. Urol., 1955, 73(4), 627-652.
73. Khan, S. R. Calcium Phosphate/Calcium Oxalate Crystal Association in Urinary Stones: Implications for Heterogeneous Nucleation of Calcium Oxalate. J. Urol. 1997, 157(1), 376-383.
74. Trinchieri, A.; Castelnuovo, C.; Lizzano, R.; Zanetti, G. Calcium Stone Disease: A Multiform Reality. Urol. Res. 2005, 33 (3), 194-198.
75. Schweizer, S.; Taubert, A. Polymer-Controlled, Bio-Inspired Calcium Phosphate Mineralization from Aqueous Solution. Macromol. Biosci. 2007, 7 (9-10), 1085-1099.
76. Heijnen, W.; Jellinghaus, W.; Klee, W. E. Calcium Oxalate Trihydrate in Urinary Calculi. Urol. Res. 1985, 13 (6), 281-283.
77. Abboud, I. A. Mineralogy and Chemistry of Urinary Stones: Patients from North Jordan. Environ. Geochem. Health 2008, 30(5), 445–463.
1. Grant, D. J. W. Polymorphism in pharmaceutical solids; Marcel Dekker, Inc.: New York, 1999; pp.1-21.
2. Threlfall, T. L. Analysis of organic polymorphs: a review, Analyst, 1995, 120(10), 2435-2460.
3. Koradia, V.; Chawla, G.; Bansal, A. K. Qualitive and quantitative analysis of clopidogrel bisulphate polymorphs. Acta Pharm. 2004, 54(3), 193-204.
4. Chawala G.; Bansal, A. K. Challenges in polymorphism of pharmaceuticals. CRIP, 2004, 5(1), 9-12.
5. Mirza, S.; Miroshnyk, I.; Heinamaki, J.; Christiansen, L.; Karjalainen, M.; Yliruusi, J. Influence of solvents on the variety of crystalline forms of erythromycin. AAPS Pharm. Sci. 2003, 5(3), 1-9.
6. Nichols, G.; Frampton, C. S. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J. Pharm. Sci. 1998, 87(6), 684-693.
7. Yu, L.; Reutzel, S. M.; Stephenson, G. A. Physical characterization of polymorphic drugs: an integrated characterization strategy. PSTT 1998, 1(3), 118-127.
8. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Infrared Spectroscopy; Brooks/COLE Thomson Learning: USA, 2001; pp13-24.
9. Gotoh, K.; Masuda, H.; Higashitani, K. Powder technology handbook, Marcel Dekker, Inc: New York, 1997; p 92.
10. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis; Thomson Learning: USA, 2007; pp 955-958.
11. Cölle, M.; Gmeiner, J.; Milius, W.; Hillebrecht, H.; Brütting, W. Preparation and characterization of blue-luminescent tris(8-hydroxyquinoline)-aluminum (Alq3). Adv. Funct. Mater. 2003, 13(2), 108-112.
12. Macur, J. E.; Marti, J.; Lui, S. C. Matericals Characterization and Chemical Analysis; Wiley-Vch: New York, 1996; pp 167-177.
13. Gotoh, K.; Masuda, H.; Higashitani, K. Powder technology handbook, Marcel Dekker, Inc: New York, 1997; pp 413-730.
14. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis; Thomson Learning: USA, 2007; pp 608-613.
15. Reed-hill, R. E. Physical Metallurgy Principles; PWS Publishing Company: Boston 1994; pp53-60.
16. Russell, S. D.; Daghlian, C. P. Scanning electron microscopic observations on deembedded biological tissue sections: comparison of different fixatives and embedding materials. J. Electron. Microsc. Tech. 1985, 2(5), 489-495.
17. Smith, W. F. Foundations of Materials Science and Engineering; McGraw-Hill Company: USA, 2004; pp 147-149.
18. Haines, P. J.; Wiburn, F. W. Thermal Analysis and Differential Scanning Calorimetry, Applications and Problems; Blackie Academic and Professional: New York 1995; pp 63-89.
19. Boldyerva, E. V.; Drebushchak, V. A.; Paukov, I. E.; Kovalevskaya, Y. A.; Drebushchak, T. N. DSC and adiabatic calorimetry study of the polymorphs of paracetamol. J. of Them. Anal. Calor. 2004, 77(2), 607-623.
20. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis, Thomson Learning: USA, 2007; pp 894-904.
21. Rouessac, F.; Rouessac, A. Infrared Spectroscopy; John Willy & Sons: Chichester, 2001; pp 170-173.
22. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis; Thomson Learning: Mississippi, 2007; pp 204-211.
23. Bauer-Brandl, A. Polymorphic transitions of cimetidine during manufacture of solid dosage forms. Int. J. Pharm. 1996, 140(2), 195-206.
24. Murthy, N. S.; Reidinger, F. Matericals Characterization and Chemical Analysis; Wiley-Vch Publishers: New York, 1996; pp 143-149.
25. Davidovich, M.; Dimarco, J.; Gougoutas, J. Z.; Scaringe, R. P.; Vitez, I.; Yin, S. Detection of polymorphic artifacts in powder x-ray diffraction determination. Am. Pharm. Rev. 1996, 138 (1), 1-2.
26. Smith, W. F. Foundations of Materials Science and Engineering; McGraw-Hill Company: USA, 2004; pp 99-101.
1. Lonsdale, K. Human Stones. Science 1968, 159 (3820), 1199-1207.
2. Parmar, M. S. Kidney Stone. Br. Med. J. 2004, 328(7453),1420-1424.
3. Herring, L. C. Observations on the Analysis of Ten Thousand Urinary Calculi. J. Urol. 1962, 88 (4), 545-562.
4. Khan, S. R. Calcium Phosphate/Calcium Oxalate Crystal Association in Urinary Stones: Implications for Heterogeneous Nucleation of Calcium Oxalate. J. Urol. 1997, 157(1), 376-383.
5. Trinchieri, A.; Castelnuovo, C.; Lizzano, R.; Zanetti, G. Calcium Stone Disease: A Multiform Reality. Urol. Res. 2005, 33 (3), 194-198.
6. Schweizer, S.; Taubert, A. Polymer-Controlled, Bio-Inspired Calcium Phosphate Mineralization from Aqueous Solution. Macromol. Biosci. 2007, 7 (9-10), 1085-1099.
7. Heijnen, W.; Jellinghaus, W.; Klee, W. E. Calcium Oxalate Trihydrate in Urinary Calculi. Urol. Res. 1985, 13 (6), 281-283.
8. Wang, L.; Nancollas, G. H. Calcium Orthophosphates: Crystallization and Dissolution. Chem. Rev. 2008, 108 (11), 4628-4669.
9. Tiselius, H. G.; Larsson, L. Calcium Phosphate: An Important Crystal Phase in Patients with Recurrent Calcium Stone Formation? Urol. Res. 1993, 21 (3), 175-180.
10. Iwata, H.; Nishio, S.; Wakatsuki, A.; Ochi, K.; Takeuchi, M. Architecture of Calcium Oxalate Monohydrate Urinary Calculi. J. Urol. 1985, 133 (2), 334-338.
11. Abboud, I. A. Mineralogy and Chemistry of Urinary Stones: Patients from North Jordan. Environ. Geochem. Health 2008, 30(5), 445–463.
12. Finlayson, B.; Reid, F. The Expectation of Free and Fixed Particles in Urinary Stone Disease. Investig. Urol. 1978, 15(6), 442-448.
13. Madsen, K. M.; Verlander, J. W.; Tisher, C. C. Relationship Between Structure and Function in Distal Tubule and Collecting Duct. J. Electron Microsc. Tech. 1988, 9(2), 187-208.
14. Kok, D. J.; Khan, S. R. Calcium Oxalate Nephrolithiasis, a Free or Fixed Particle Disease. Kidney Int. 1994, 46 (3), 847-854.
15. Al-Atar, U.; Bokov, A. A.; Marshall, D.; Teichman, J. M. H.; Gates, B. D.; Ye, Z. G.; Branda, N. R. Mechanism of Calcium Oxalate Monohydrate Kidney Stones Formation: Layered Spherulitic Growth. Chem. Mater. 2010, 22 (4), 1318-1329.
16. Baumann, J. M. Can the Formation of Calcium Oxalate Stones Be Explained by Crystallization Processes in Urine? Urol. Res. 1985, 13 (6), 267-270.
17. Meyer, J. M.; Smith, L. H. Growth of Calcium Oxalate Crystals I. A Model for Urinary Stone Growth. Invest. Urol. 1975, 13(1), 31-35.
18. Tsujihata, M. Mechanism of Calcium Oxalate Renal Stone Formation and Renal Tubular Cell Injury. Inter. J. Urol. 2008, 15 (2), 115-120.
19. Ebrahimpour, A.; Perez, L.; Nancollas, G. H. Induced Crystal Growth of Calcium Oxalate Monohydrate at Hydroxyapatite Surfaces. The Influence of Human Serum Albumin, Citrate, and Magnesium. Langmuir 1991, 7 (3), 577-583.
20. Khan, S. R.; Glenton, P. A. Calcium Oxalate Crystal Deposition in Kidneys of Hypercalciuric Mice with Disrupted Type IIa Sodium-Phosphate Co-Transporter. Am. J. Physiol. Renal. Physiol. 2008, 294 (5), F1109-F1115.
21. Prien, E. L. Studies in Urolithiasis: III. Physicochemical Principles in Stone Formation and Preservation. J. Urol. 1955, 73 (4), 627-652.
22. Pak, C. Y. C. Physiochemical Basis for Formation of Renal Stones of Calcium Phosphate Origin: Calculation of the Degree of Saturation of Urine with Respect to Brushite. J. Clin. Invest. 1969, 48 (10), 1914-1922.
23. Will, E. J.; Bijvoet, O. L. M.; Blomen, L. J. M. J.; van der Linden, H. Growth Kinetics of Calcium Oxalate Monohydrate. I. Method and Validation. J. Cryst. Growth 1983, 64 (2), 297-305.
24. Blomen, L. J. M. J.; Will, E. J.; Bijvoet, O. L. M.; van der Linden, H. Growth Kinetics of Calcium Oxalate Monohydrate. II. The Variation of Seed Concentration. J. Cryst. Growth 1983, 64 (2), 306-315.
25. Bijvoet, O. L. M.; Blomen, L. J. M. J.; Will, E. J.; van der Linden, H. Growth Kinetics of Calcium Oxalate Monohydrate. III. Variation of Solution. J. Cryst. Growth 1983, 64 (2), 316-325.
26. El-Shall, H.; Jeon, J. H.; Abdel-Aal, E. A.; Khan, S.; Gower, L.; Rabinovich, Y. A Study of Primary Nucleation of Calcium Oxalate Monohydrate: I. Effect of Supersaturation. Cryst. Res. Technol. 2004, 39 (3), 214-221.
27. El-Shall, H.; Jeon, J. H.; Abdel-Aal, E. A.; Khan, S.; Gower, L.; Rabinovich, Y. A Study of Primary Nucleation of Calcium Oxalate Monohydrate: II. Effect of Urinary Species. Cryst. Res. Technol. 2004, 39 (3), 222-229.
28. Hacherl, J. M.; Paul, E. L.; Buettner, H. M. Investigation of Imaging-Jet Crystallization with a Calcium Oxalate Model System. AIChE Journal 2003, 49 (9), 2352-2362.
29. Kok, D. J.; Papapoulos, S. E.; Bijvoet, O. L. M. Crystal Agglomeration is a Major Element in Calcium Oxalate Urinary Stone Formation. Kidney Int. 1990, 37 (1), 51-56.
30. Kok, D. J.; Papapoulos, S. E.; Blomen, L. J. M. J.; Bijvoet, O. L. M. Modulation of Calcium Oxalate Monohydrate Crystallization Kinetics In Vitro. Kidney Int. 1988, 34 (3), 346-350.
31. Štulajterová, R.; Medvecký, Ľ. Effect of Calcium Ions on Transformation Brushite to Hydroxyapatite in Aqueous Solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects 2008, 316 (1-3), 104-109.
32. Pak, C. Y. C.; Adams-Huet, B.; Poindexter, J. R.; Pearle, M. S.; Peterson, R. D.; Moe, O. W. Relative Effect of Urinary Calcium and Oxalate on Saturation of Calcium Oxalate. Kidney Int. 2004, 66 (5), 2032-2037.
33. Roger Qiu, S.; Wierzbicki, A.; Alan Salter, E.; Zepeda, S.; Orme, C. A.; Hoyer, J. R.; Nancollas, G. H.; Cody, A. M.; De Yoreo, J. J. Modulation of Calcium Oxalate Monohydrate Crystallization by Citrate through Selective Binding to Atomic Steps. J. Am. Chem. Soc. 2005, 127 (25), 9036-9044.
34. Tiselius, H. G.; Berg, C.; Fornander, A. M.; Nilsson, M. A. Effects of Citrate on the Different Phases of Calcium Oxalate Crystallization. Scanning Microsc. 1993, 7 (1) 381-389.
35. Chow, K.; Dixon, J.; Gilpin, S.; Kavanagh, J. P.; Rao, P. N. Citrate Inhibits Growth of Residual Fragments in an In Vitro Model of Calcium Oxalate Renal Stones. Kidney Int. 2004, 65 (5), 1724-1730.
36. Wang, L.; Zhang, W.; Roger Qiu, S.; Zachowicz, W. J.; Guan, X.; Tang, R.; Hoyer, J. R.; De Yoreo, J. J.; Nancollas, G. H. Inhibition of Calcium Oxalate Monohydrate Crystallization by the Combination of Citrate and Osteopontin. J. Cryst. Growth 2006, 291 (1), 160-165.
37. Weaver, M. L.; Roger Qiu, S.; Hoyer, J. R.; Casey, W. H.; Nancollas, G. H.; De Yoreo, J. J. Inhibition of Calcium Oxalate Monohydrate Growth by Citrate and the Effect of the Background Electrolyte. J. Cryst. Growth 2007, 306 (1), 135-145.
38. Kok, D.J.; Papapoulos, S. E.; Bijvoet, O. L. M. Excessive Crystal Agglomeration with Low Citrate Excretion in Recurrent Stone-Formers. The Lancet 1986, 327 (8489), 1056-1058.
39. Wierzbicki, A.; Sikes, C. S.; Sallies, J. D.; Madura, J. D.; Stevens, E. D.; Martin, K. L. Scanning Electron Microscopy and Molecular Modeling of Inhibition of Calcium Oxalate Monohydrate Crystal Growth by Citrate and Phosphocitrate. Calcif. Tissue Int. 1995, 56 (4), 297-304.
40. Hodgkinson, A. Relations between Oxalic Acid, Calcium, Magnesium and Creatinine Excretion in Normal Men and Male Patients with Calcium Oxalate Kidney Stones. Clin. Sci. Mol. Med. 1974, 46 (3), 357-367.
41. Wunderlich, W. Aspects of the Influence of Magnesium Ions on the Formation of Calcium Oxalate. Urol. Res. 1981, 9 (4), 157-161.
42. Lieske, J. C.; Farell, G.; Deganello, S. The Effect of Ions at the Surface of Calcium Oxalate Monohydrate Crystals on Cell-Crystal Interactions. Urol. Res. 2004, 32 (2), 117-123.
43. Li, S.; Sun, D. M.; Wu, Q. S.; Ding, Y. P. Simultaneous Synthesis of Different Structures of Calcium Oxalate by Living Bi-Template. Cryst. Res. Technol. 2008, 43 (7), 740-744.
44. Akin, B.; Öner, M.; Bayram, Y.; Demadis, K. D. Effects of Carboxylate-Modified, “Green” Inulin Biopolymers on the Crystal Growth of Calcium Oxalate. Cryst. Growth Des. 2008, 8 (6), 1997-2005.
45. Benítez, I. O.; Talham, D. R. Brewster Angle Microscopy of Calcium Oxalate Monohydrate Precipitation at Phospholipid Monolayer Phase Boundaries. Langmuir 2004, 20 (19), 8287-8293.
46. Backov, R.; Lee, C. M.; Khan, S.; Mingotaud, C.; Fanucci, G. E.; Talham, D. R. Calcium Oxalate Monohydrate Precipitation at Phosphatidylglycerol Langmuir Monolayers. Langmuir 2000, 16 (14), 6013-6019.
47. Sayan, P.; Sargut Titiz, S.; Kiran, B. Calcium Oxalate Crystallization in the Presence of Amino Acids, Proteins and Carboxylic Acids. Cryst. Res. Technol. 2009, 44 (8), 807-817.
48. Thurgood, L. A.; Cook, A. F.; Sørensen, E. S.; Ryall, R. L. Face-Specific Incorporation of Osteopontin into Urinary and Inorganic Calcium Oxalate Monohydrate and Dihydrate Crystals. Urol. Res. 2010, 38 (5), 357-376.
49. Weaver, M. L.; Qiu, S. R.; Friddle, R. W.; Casey, W. H.; De Yoreo, J. J. How the Overlapping Time Scales for Peptide Binding and Terrace Exposure Lead to Nonlinear Step Dynamics During Growth of Calcium Oxalate Monohydrate. Cryst. Growth Des. 2010, 10 (7), 2954-2959.
50. Letellier, S. R.; Lochhead, M. J.; Campbell, A. A.; Vogel, V. Oriented Growth of Calcium Oxalate Monohydrate Crystals Beneath Phospholipid Monolayers. Biochim. Biophys. Acta 1998, 1389 (1), 31-45.
51. Shirane, Y.; Kurokawa, Y.; Miyashita, S.; Komatsu, H.; Kagawa, S. Study of Inhibition Mechanisms of Glycosaminoglycans on Calcium Oxalate Monohydrate Crystals by Atomic Force Microscopy. Urol. Res. 1999, 27 (6), 426-431.
52. Jung, T.; Kim, W. S.; Choi, C. K. Crystal Structure and Morphology Control of Calcium Oxalate Using Biopolymeric Additives in Crystallization. J. Cryst. Growth 2005, 279 (1-2), 154-162.
53. Masui, M.; Suzuki, M.; Fujise, Y.; Kanayama, N. Calcium-Induced Changes in Chrondroitin Sulfate Chains of Urinary Trypsin Inhibitor. Biochim. Biophys. Acta 2001, 1546 (2), 261-267.
54. Honda, M.; Yoshioka, T.; Yamaguchi, S.; Yoshimura, K.; Miyake,O.; Utsunomiya, M.; Koide, T.; Okuyama, A. Characterization of Protein Components of Human Urinary Crystal Surface Binding Substance. Urol. Res. 1997, 25 (5), 355-360.
55. Hess, B.; Nakagawa, Y.; Coe, F. L. Inhibition of Calcium Oxalate Monohydrate Crystal Aggregation by Urine Proteins. AJP-Renal Physiol. 1989, 257 (1), F99-F106.
56. Deganello, S. The Interaction between Nephrocalcin and Tamm-Horsfall Proteins with Calcium Oxalate Dihydrate. Scanning Microsc. 1993, 7 (3), 1111-1118.
57. Grases, F.; Costa-Bauzá; March, J. G.; Masárová, L. Glycosaminoglycans, Uric Acid and Calcium Oxalate Urolithiasis. Urol. Res. 1991, 19(6), 375-380.
58. Grases, F.; Gil, J. J.; Conte, A. Glycosaminoglycans: Inhibition of Calcium Oxalate Crystalline Growth and Promotion of Crystal Aggregation. Colloids Surf. 1989, 36(1), 29-38.
59. Jung, T.; Sheng, X.; Choi, C. K.; Kim, W. S.; Wesson, J. A.; Ward, M. D. Probing Crystallization of Calcium Oxalate Monohydrate and the Role of Macromolecule Additives with In Situ Atomic Force Microscopy. Langmuir 2004, 20 (20), 8587-8596.
60. Ouyang, J. M.; Deng, S. P.; Zhong, J. P.; Tieke, B.; Yu, S. H. Crystallization of Calcium Oxalate Monohydrate at Dipalmitoylphosphatidylcholine Monolayers in the Presence of Chondroitin Sulfate A. J. Cryst. Growth 2004, 270 (3-4), 646-654.
61. Guo, S.; Ward, M. D.; Wesson, J. A. Direct Visualization of Calcium Oxalate Monohydrate Crystallization and Dissolution with Atomic Force Microscopy and the Role of Polymeric Additives. Langmuir 2002, 18 (11), 4282-4291.
62. Akyol, E.; Öner, M. Inhibition of Calcium Oxalate Monohydrate Crystal Growth Using Polyelectrolytes. J. Cryst. Growth 2007, 307 (1), 137-144.
63. Koide, T.; Takemoto, M.; Itatani, H.; Takaha, M.; Sonoda, T. Urinary Macromolecular Substances as Natural Inhibitors of Calcium Oxalate Crystal Aggregation. Invest. Urol. 1981, 18 (5), 382-386.
64. Angell, A. H.; Resnick, M. I. Surface Interaction Between Glycosaminoglycans and Calcium Oxalate. J. Urol. 1989, 141 (5), 1255-1258.
65. Fellström, B.; Danielson, B. G.; Ljunghall, S.; Wikström, B. Crystal Inhibition: The Effects of Polyanions on Calcium Oxalate Crystal Growth. Clin. Chim. Acta 1986, 158 (3), 229-235.
66. Rodgers, A. L.; Ball, D.; Harper, W. Urinary Macromolecules Are Promoters of Calcium Oxalate Nucleation in Human Urine: Turbidimetric Studies. Clin. Chim. Acta 1993, 220(2), 125-134.
67. Wesson, J. A.; Worcester, E. M.; Wiessner, J. H.; Mandel, N. S. Control of Calcium Oxalate Crystal Structure and Cell Adherence by Urinary Macromolecules. Kidney Int. 1998, 53 (4), 952-957.
68. Bouropoulos, C.; Vagenas, N.; Klepetsanis, P.; Stavropoulos, N.; Bouropoulos, N. Growth of Calcium Oxalate Monohydrate on Uric Acid Crystals at Sustained Supersaturation. Cryst. Res. Technol. 2004, 39 (8), 699-704.
69. Streit, J.; Tran-Ho, L.-C.; Königsberger, E. Solubility of the Three Calcium Oxalate Hydrate in Sodium Chloride Solutions and Urine-Like Liquors. Monatshefte für Chemie 1998, 129 (12), 1225-1236.
70. Opalko, F. J.; Adair, J. H.; Khan, S. R. Heterogeneous Nucleation of Calcium Oxalate Trihydarte in Artificial Urine by Constant Composition. J. Cryst. Growth 1997, 181 (4), 410-417.
71. Laube, N.; Pullmann, M.; Hergarten, S.; Hesse, A. Influence of Urinary Stones on the Composition of a 24-hour Urine Sample. Clinic. Chem. 2003, 49 (2), 281-285.
72. Callejas-Fernández, J.; Martínez-García, R.; Hidalgo-Alvarez, R.; de las Nieves, F. J. Effect of Some Inhibitors on the Zeta-Potential of Calcium Oxalate Monohydrate Particles. Prog. Colloid Polym. Sci. 1993, 93, 210-215.
73. Tiselius, H. G.; Fornander, A. M.; Nilsson, M. A. Inhibition of Calcium Oxalate Crystallization in Urine. Urol. Res. 1987, 15(2), 83-86.
74. Sommer, A. P.; Kajander, E. O. Nanobacteria-Induced Kidney Stone Formation: Novel Paradigm Based on the FERMIC Model. Cryst. Growth Des. 2002, 2(6), 563-565.
75. Chou, Y. H.; Wang, H. S.; Li, C. C. Clinical analysis of patients with urinary calcium phosphate stones. J. Taiwan Urol. Assoc. 2009, 20 (1), 21-24.
76. Göbel, C.; Simon, P.; Buder, J.; Tlatlik, H.; Kniep, R. Phase Formation and Morphology of Calcium Phosphate-Gelatine-Composites Grown by Double Diffusion Technique: The Influence of Fluoride. J. Mater. Chem. 2004, 14(14), 2225-2230.
77. Joshi, V. S.; Joshi, M. J. FTIR Spectroscopic, Thermal and Growth Morphological Studies of Calcium Hydrogen Phosphate Dihydrate Crystals. Cryst. Res. Technol. 2003, 38 (9), 817-821.
78. Zahn, D. Mechanisms of Calcium and Phosphate Ion Association in Aqueous Solution. Z. Anorg. Allg. Chem. 2004, 630 (10), 1507-1511.
79. Grases, F.; Söhnel, O.; Vilacampa, A. I.; March, J. G. Phosphates Precipitating from Artificial Urine and Fine Structure of Phosphate Renal Calculi. Clin. Chim. Acta 1996, 244 (1), 45-67.
80. Bigi, A.; Falini, G..; Foresti, E.; Gazzano, M.; Ripamonti, A.; Roveri, N. Magnesium Influence on Hydroxyapatite Crystallization. J. Inorg. Biochem. 1993, 49 (1), 69-78.
81. Ebisuno, S.; Kohjimoto, Y.; Yoshida, T.; Ohkawa, T. Effect of Urinary Macromolecules on Aggregation of Calcium Oxalate in Recurrent Calcium Stone Formers and Healthy. Urol. Res. 1993, 21 (4), 265-268.
82. Cody, A. M.; Cody, R. D. Calcium Oxalate Trihydrate Phase Control by Structurally-Specific Carboxylic Acids. J. Cryst. Growth 1994, 135 (1-2), 235-245.
83. Wang, H.; Lee, J.-K.; Moursi, A.; Lannutti, J. J. Ca/P Ratio Effects on the Degradation of Hydroxyapatite In Vitro. J. Biomed. Mater. Res. Part A 2003, 67A (2), 599-608.
84. Boistelle, R.; Lopez-Valero, I.; Abbona, F. Crystallization of Calcium Phosphate in the Presence of Magnesium. Nephrologie 1993, 14 (6), 265-269.
85. Meyer, J. L.; Nancollas, G. H. The Effect of pH and Temperature on the Crystal Growth of Hydroxyapatite. Archs. Oral Biol. 1972, 17 (11), 1623-1627.
86. Herrmann, U.; Schwille, P. O.; Kuch, P. Crystalluria Determined by Polarization Microscopy. Technique and Results in Healthy Control Subjects and Patients with Idiopathic Recurrent Calcium Urolithiasis Classified in Accordance with Calciuria. Urol. Res. 1991, 19 (3), 151-158.
87. Haselhuhn, F.; Kind, M. Pseudo-Polymorphic Behavior of Precipitated Calcium Oxalate. Chem. Eng. Technol. 2003, 26 (3), 347-353.
88. Grohe, B.; Rogers, K. A.; Goldberg, H. A.; Hunter, G.. K. Crystallization Kinetics of Calcium Oxalate Hydrates Studied by Scanning Confocal Interference Microscopy. J. Cryst. Growth 2006, 295 (2), 148-157.
89. Su, C.-J.; Shevock, P. N.; Khan, S. R.; Hackett, R. L. Effect of Magnesium on Calcium Oxalate Urolithiasis. J. Urol. 1991, 145 (5), 1092-1095.
90. Lieske, J. C.; Toback, F. G..; Deganello, S. Face-Selective Adhesion of Calcium Oxalate Dihydrate Crystals to Renal Epithelial Cells. Calcif. Tissue Int. 1996, 58 (3), 195-200.
91. Wesson, J. A.; Worcester, E. M.; Wiessner, J. H.; Mandel, N. S. Control of Calcium Oxalate Crystal Structure and Cell Adherence by Urinary Macromolecules. Kidney Int. 1998, 53 (4), 952-957.
92. Domrongkitchaiporn, S.; Stitchantrakul, W.; Kochakarn, W. Causes of Hypocitraturia in Recurrent Calcium Stone Formers: Focusing on Urinary Potassium Excretion. Am. J. Kidney Dis. 2006, 48 (4), 546-554.
93. Hallson, P. C.; Rose, G. A. Measurement of Calcium Phosphate Crystalluria: Influence of pH and Osmolality and Invariable Presence of Oxalate. Br. J. Urol. 1989, 64 (5), 458-462.
94. Boyce, W. H. Organic Matrix of Human Urinary Concretions. Am. J. Med. 1968, 45 (5), 673-683.
95. Højgaard, I.; Tiselius, H. G. Crystallization in the Nephron. Urol. Res. 1999, 27 (6), 397-403.
96. Meyer, J. L.; Bergert, J. H.; Smith, L. H. Epitaxial Relationships in Urolithiasis: The Calcium Oxalate Monohydrate-Hydroxyapatite System. Clin. Sci. Mol. Med. 1975, 49 (5), 369-374.
97. Lee, D.; Kumta, P. N. Chemical Synthesis and Stabilization of Magnesium Substituted Brushite. Mater. Sci. Eng. C 2010, 30 (7), 934-943.
98. Abbona, F.; Lundager Madsen, H. E.; Boistelle, R. Crystallization of Two Magnesium Phosphates, Struvite and Newberyite: Effect of pH and Concentration. J. Cryst. Growth 1982, 57 (1), 6-14.
1. oshi, V. S.; Joshi, M. J. FTIR Spectroscopic, Thermal and Growth Morphological Studies of Calcium Hydrogen Phosphate Dihydrate Crystals. Cryst. Res. Technol. 2003, 38 (9), 817-821.
2. Lee, D.; Kumta, P. N. Chemical Synthesis and Stabilization of Magnesium Substituted Brushite. Mater. Sci. Eng. C 2010, 30 (7), 934-943.
3. Rößler, S.; Sewing, A.; Stölzel, M.; Born, R.; Scharnweber, D.; Dard, M.; Worch, H. Electrochemically Assisted Deposition of Thin Calcium Phosphate Coatings at Near-Physiological pH and Temperature. J. Biomed. Mater. Res. A 2003, 64A(4), 655-663.
1. chweizer, S.; Taubert, A. Polymer-Controlled, Bio-Inspired Calcium Phosphate Mineralization from Aqueous Solution. Macromol. Biosci. 2007, 7 (9-10), 1085-1099
2. Wang, L.; Nancollas, G. H. Calcium Orthophosphates: Crystallization and Dissolution. Chem. Rev. 2008, 108 (11), 4628-4669.
1. Togkalidou T.; Braatz R. D.; Johnson B. K.; Davidson O.; Andrews A. Experimental Design and Inferential Modeling in Pharmaceutical Crystallization. AIChE J. 2001, 47(1), 160-168.
2. Lee T.; Kuo C. S.; Chen Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Tech. 2006, 30(10), 72-92.
3. Akpalu Y.; Kielhorn L.; Hsiao B. S.; Stein R. S.; Russell T. P.; Egmond J. V.; Muthukumar M. Structure Development During Crystallization of Homogeneous Copolymers of Ethene and 1-octene: Time-resolved Synchrotron X-ray and SALS Measurements. Macromolecules 1999, 32(3), 765-770.
4. Ahari H.; Bedard R. L.; Bowes Carol L.; Coombs N.; Ozin G. A.; Petrov S.; Sokolov I.; Verma A.; Vovk G.; Young D. Effect of Microgravity on The Crystallization of A Selfassembling Layered Material. Nature 1997, 388(6645), 857-860.
5. Wright A. J.; Mcgauley S. E.; Narine S. S.; Willis W. M.; Lencki R.W.; Marangoni A. G. Solvent Effect on The Crystallization Behavior of Milk Fat Fractions. J. Agric. Food Chem. 2000, 48(4), 1033-1040.
6. Gotoh K.; Masuda H.; Higashitani K. Powder Technology Hand Book, 2nd ed.; Marcel Dekker: New York, USA, 1997; pp. 459-468.
7. Morissettea S. L.; Almarssona O.; Petersona M. L.; Remenara J. F.; Reada M. J.; Lemmoa A. V.; Ellisa S.; Cimab M. J.; Gardnera C. R. High-throughput Crystallization: Polymorphs, Salt, Co-crystals and Solvates of Pharmaceutical Solids. Adv. Drug Del. Rev. 2004, 56(3), 275-300.
8. Herring L. C. Observations on The Analysis of Ten Thousand Urinary Calculi. J. Urol. 1962, 88(4), 545-562.
9. Lee T.; Chen Y. H.; Zhang C. W Solubility, Polymorphism, Crystallinity, Crystal Habit, and Drying Scheme of (R, S)-(±)-Sodium Ibuprofen Dehydrate. Pharm. Tech. 2007, 31(6), 72-87.
10. Prien E. L. Studies in Urolithiasis. III. Physicochemical Principles in Stone Formation and Prevention. J. Urol. 1955, 73(4), 627-652.
11. Lonsdale K. Human Stones: Limited Studies Give Some Details of Composition, Rates of Growth, Distribution, and Possible Causes. Science 1968, 159(3820), 1199–1207.
12. Ouyang J. M.; Zhou N.; Duan L.; Tieke B. Ability of Multifunctional Sodium Carboxylates to Favor Crystal Growth of Calcium Oxalate Dihydrate and Trihydrate in Lecithin-water Liposome Systems. Colloid Surface Physicochem. Eng. Aspect. 2004, 245(1-3), 153-162.
13. Deganello S.; Kampf A. R.; Moore P. B. The Crystal Structure of Calcium Oxalate Trihydrate: Ca(H¬2O)3(C2O4). Am. Miner. 1981, 66(7-8), 859–865.
14. Streit J.; Tran-Ho L. C.; Königsberger E. Solubility of the Three Calcium Oxalate Hydrates in Sodium Chloride Solutionsand Urine-Like Liquors. Mon. Chem. 1998, 129(12), 1225-1236.
15. Akın B.; Öner M.; Bayram Y.; Demadis K. D. Effects of Carboxylate-Modified, “Green” Inulin Biopolymers on the Crystal Growth of Calcium Oxalate. Cryst. Growth Des, 2008, 8(6), 1997–2005.
16. Hochrein O.; Thomas A.; Kniep R. Revealing the Crystal Structure of Anhydrous Calcium Oxalate, Ca[C2O4], by a Combination of Atomistic Simulation and Rietveld Refinement. Z. Anorg. Allg. Chem. 2008, 634(11), 1826-1829.
17. Sayan P.; Sargut S. T.; Kiran B. Calcium Oxalate Crystallization in The Presence of Amino Acids, Proteins and Carboxylic Acids. Cryst. Res. Technol. 2009, 44(8), 807-817.
18. Heijnen W.; Jellinghaus W.; Klee W. E. Calcium Oxalate Trihydrate in Urinary Calculi. Urol. Res. 1985, 13(6), 281-283.
19. Bouropoulos C.; Vagenas N.; Klepetsanis P.; Bouropoulos N. Growth of Calcium Oxalate Monohydrate on Uric Acid Crystals at Sustained Supersaturation. Cryst. Res. Technol. 2004, 39(3), 699-704.
20. Tazzoli V.; Domeneghetti C. The Crystal Structures of Whewellite and Weddellite: Re-examination and Comparison. Am. Miner. 1980, 65(3-4), 327-334.
21. Brittain H. G.; Grant D. J. W. Polymorphism in Pharmaceutical Solids, Brttain H. G., Eds.; Marcel Dekker: New York, 1999; pp. 279-330.
22. Reichardt C. Solvents and Solvent Effects in Organic Chemistry, Reichardt C., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim: Germany, 2006; pp. 5-46.
23. Lubczak J.; Cisek-Cicirko I.; My liwiec B. Preparation and Applications of The Products of Reaction of Uric Acid with Formaldehyde. React. Funct. Polym. 2002, 53(2-3), 113-124.
24. Mullin J. W. Crystallization, 3rd ed.; Butterworth-Heinemann, Jordan Hill: UK, 1997; pp. 93, 248-250.
25. Martino P. D.; Beccerica M.; Joiris E.; Palmieri G. F.; Gayot A.; Martelli S. Influence of Crystal Habit on The Compression and Densification Mechanism of Ibuprofen. J. Crys. Growth 2002, 243(2), 345-355.
26. Winn D.; Doherty M. F. A New Technique for Predicting the Shape of Solution-Grown Organic Crystals. AlChE J. 1998, 44(11), 2501-2514.
27. Tiwary A. K. Modification of Crystal Habit and Its Role in Dosage form Performance. Drug Dev. Ind. Pharm. 2001, 27(7), 699–709.
28. Hilfiker R.; Blatter F.; Raumer M. V. Polymorphism in Pharmaceutical Industry, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim: Germany, 2006; pp. 1-19.
29. Price C. J. Take Some Solid Steps to Improve Crystallization. Chem. Eng. Prog. 1997, 93(9), 34-43.
30. Rodriguez-Spong B.; Price C. P.; Jayasankar A.; Matzger A. J.; Rodriguez-Hornedo N. General Principles of Pharmaceutical Solid Polymorphism: a Supramolecular Perspective. Adv. Drug Del. Rev. 2004, 56(2), 241-271.
31. Threlfall T. Crystallization of Polymorphs: Thermodynamic Insight into The Role of Solvent. Org. Process Res. Dev. 2000, 4(5), 384-390.
32. Cardew P. T.; Davey R. J. The Kinetics of Solvent-mediated Phase Transformation. Math. Phys. Sci. 1985, 398(1815), 415-428.
33. Giron D. Thermal Analysis and Calorimetric Methods in The Characterization of
Polymorphs and Solvates. Thermochim. Acta 1995, 248(1), 1-59.
34. Shi Y.; Evans J. E.; Rock K.L. Molecular Identification of A Danger Signal That Alerts The Immune System to Dying Cells. Nature 2003, 425(6957), 516-521.
35. Grases F.; Villacampa A. I.; Costa-Bauzá A.; Söhnel O. Uric Acid Calculi: Types, Etiology and Mechanism of Formation. Clin. Chim. Acta 2000, 302(1-2), 89-104.
36. Grases F.; Villacampa A. I.; Costa-Bauzá A.; Söhnel O. Uric Acid Calculi. Scanning Microscopy 1999, 13(2-3), 223-234.
37. Sours R. E.; Fink D. A.; Swif t J. A. Dyeing Uric Acid Crystals with Methylene Blue. J. Am. Chem. Soc. 2002, 124(29), 8630-8636.
38. Zellelow A. Z.; Kim K. H.; Sours R. E.; Swift J. A. Solid-state Dehydration of Uric Acid Dihydrate. Cryst. Growth Des. 2010, 10(1), 418-425.
39. Wilson E. V.; Bushiri M. J.; Vaidyan V. K. Analytical Characterization, Thermal and FTIR Studies of Urinary Calculi. J. Optoelectron. Biomed. Mater. 2010, 2(2), 85-90.
40. Shirley R. Uric Acid Dihydrate: Crystallography and Identification. Science 1966, 152(3728), 1512-1513.
41. Anderson N. G. Practical Process Research & Development; Academic Press: New York, 2000; pp. 81–111.
42. Kociba K. J.; Gallagher P. K. A Study of Calcium Oxalate Monohydrate Using Dynamic Differential Scanning Calorimetry and Other Thermoanalytical Techniques. Thermochim. Acta 1996, 282/283(1), 277-296.
43. Jung T.; Kim W. S.; Choi C. K. Crystal Structure and Morphology Control of Calcium Oxalate Using Biopolymeric Additives in Crystallization. J. Cryst. Growth 2005, 279(1-2), 154-162.
44. Robertson W. G.; Jones J. S.; Heaton M. A.; Stevenson A. E.; Markwell P. J. Predicting the Crystallization Potential of Urine from Cats and Dogs with Respect to Calcium Oxalate and Magnesium Ammonium Phosphate. J. Nutr. 2002, 132(6), 1637S-1641S.
45. Grases F.; Millan A.; Conte A. Production of Calcium Oxalate Monohydrate, Dihydrate or Trihydrate. Urol. Res. 1990, 18(1), 17-20.
46. Doherty W. O. S.; Crees O. L.; Senogles E. The Preparation of Calcium Oxalate Dihydrate Crystals. Cryst. Res.Techno. 1994, 29(4), 517-524.
47. Lee T.; Lin M. S. Sublimation Point Depression of Tris(8-hydroxyquinoline) aluminum(III) (Alq3) by Crystal Engineering. J. Cryst. Growth 2007, 7(9), 1803-1810.
48. Berkovitch-Yellin Z.; Mil J. V.; Addadi L.; Idelson M.; Lahav M.; Leiserowitz L. Crystal Morphology Engineering by "Tailor-made" Inhibitors; A New Probe to Fine Intermolecular Interactions. J. Am. Chem. Soc. 1985, 107(11), 3111-3122.
49. Laskowski D. E. Chemical Microscopy of Urinary Calculi. Anal. Chem. 1965, 37(11), 1399–1404.
50. Schubert G.; Reck G.; Jancke H.; Kraus W.; Patzelt C. Uric Acid Monohydrate- A New Urinary Calculus Phase. Urol. Res. 2005, 33(3), 231-238.
51. Bunyan J. M. E.; Shankland N.; Sheen D. B. Solvent Effect on The Morphology of Ibuprofen. Particle Design via Crystallization AIChE Symp. Series 1991, 87(284), 44-57.
52. Kaloustian J.; Pauli A. M.; Pieroni G.; Portugal H. The Use of Thermal Analysis in Determination of Some Urinary Calculi of Calcium Oxalate. J. Therm. Anal. Calorim. 2002, 70(3), 959-973.
53. Valarmathi D.; Abraham L.; Gunasekaran S. Growth of Calcium Oxalate Monohydrate Crystal by Gel Method and Its Spectroscopic Analysis. Indian J. Pure Appl. Phys. 2010, 48(1), 36-38.
54. Girija E. K.; Latha S. C.; Kalkura S. N.; Subramanian C.; Ramasamy P. Crystallization and Microhardness of Calcium Oxalate Monohydrate. Mater. Chem. Phys. 1998, 52(3), 253-257.
55. Zhang Y.; Tao J.; Feng N.; Han X. Crystal Growth of Calcium Oxalate Induced by The Extracts of Semen Plantaginis and Folium Pyrrosiae. Cryst. Res. Technol 2008, 43(9), 931-934.
指導教授 李度(Tu Lee) 審核日期 2011-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明