博碩士論文 983204048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.217.84.171
姓名 張智堯(Chih-Yao Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
(A study on dynamics of micellar evolutions via fusion and fission in polystyrene-block-poly(4-vinylpyridine) monolayer films)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討利用四氫呋喃(THF)溶劑退火方法調控聚苯乙烯聚4 乙烯吡啶(polystyrene-block-poly(4-vinylpyridine),P(S-b-4VP)) 微胞在矽基材(SiOx/Si)和接有聚苯乙烯(polystyrene, PS)接枝鏈的基材(PS4k-SiOx/Si, PS19k-SiOx/Si)上之聚變與裂變過程。基材上PS接枝鏈的長短對於微胞形態從圓球轉變成圓柱狀的變化速率具有極大的影響力。當P(S-b-4VP)微胞旋鍍在PS4k-SiOx基材上且處於溶劑退火的初期與中期階段,薄膜結構主要為圓柱狀形態。然而,當微胞旋鍍在SiOx/Si和PS19k-SiOx/Si基材時,底層的蘑菇狀(mushroom)接枝鏈會和旋鍍在上的微胞產生糾結(entanglement)與穿透(penetration)效應,使得微胞間不易互相合併形成圓柱形態,仍然維持圓球狀形態。當薄膜經THF溶劑退火時間超過300分鐘而達到退火末期時,不管是在SiOx/Si或是接有PS接枝鏈的基材上,結構均為圓球狀形態為主。另一方面,本研究亦利用照射紫外光臭氧(UV/ozone)來控制PS4k-SiOx/Si基材的表面能。PS4k-SiOx/Si照射紫外光臭氧(UV/ozone)後的表面性質差異可依照射時間長短分成表面氧化丶表面劣化丶高分子毛刷完全移除等三階段。而微胞在這些不同表面性質的基材上經溶劑退火後,其結構形態的轉變也隨之不同。我們進一步結合紫外光臭氧選擇性調控基材表面能等方式,製備出在微米尺度有序下同時具有圓柱與圓球的P(S-b-4VP)單層薄膜。
摘要(英) This work focuses on the temporal evolution of micellar nanostructures in solvent-annealed P(S-b-4VP) monolayer films on bare and PS-grafted substrates (PS4k-SiOx/Si, PS19k-SiOx/Si) under tetrahydrofuran (THF) vapor. The size of end-grafted PS homopolymers on Si substrates plays an important role in controlling the rate of structural transitions between spherical and cylindrical micelles through fusion or fission. At the early and intermediate stages of solvent annealing, cylindrical micelles are dominant over spherical micelles on a grafted layer of short brushes (PS4k-SiOx/Si). On substrates having an attractive surface (SiOx/Si) or a grafted layer of long PS chains (PS19k-SiOx/Si), upon solvent annealing, the major domain within thin monolayered films is still spherical micelles due to the retardation of micellar fusion by which spherical micelles merege to form cylindrical micelles. We ascribe the retardation of micellar fusion to the presence of the entanglement and interpenetration of micelles with the underlying chains in a mushroom-like conformation. Then the spherical micelles become the only discernible species if monolayered films are exposed to THF for time periods longer than 300 min (final stage) regardless of bare or grafted substrates. Besides, we also controlled the interfacial interactions by imposing UV/ozone (UVO) exposure to substrates that were initially coated with end-grafting a layer of short PS chains, by which the grafted PS chains would be oxidized, degraded or totally removed with controls over the UVO treatment time. The dynamics of the transition between spherical and cylindrical micelles was found to depend on the interfacial potentials as thin films were annealed in vapors of THF. On combining the chemical micropatterning of the grafted layer of PS brushes with UV/ozone etching, we prepared P(S-b-4VP) films that have cylindrical and parallel cylinders coexisting with a micro-scale order within the same monolayer.
關鍵字(中) ★ 聚變
★ 團鏈共聚物
★ 微胞
★ 裂變
關鍵字(英) ★ fission
★ fusion
★ micelle
★ block copolymer
論文目次 中文摘要...i
Abstract...iii
致謝...v
目錄...vi
圖目錄...ix
表目錄...xviii
第一章...1
第二章 簡介...3
2-1團鏈共聚物之自組裝行為...3
2-2雙親性團鏈共聚物(amphiphilic block copolymers, a-BCP)...5
2-3 稀薄溶液中的團鏈共聚物理論...6
2-3-1 團鍵共聚物微胞的形成...6
2-3-2 團聯共聚物微胞化之熱力學性質...9
2-3-3 微胞的聚集數(aggregation number)...11
2-3-4 團鏈共聚物微胞化理論模型...12
2-4 微胞的聚變(fusion)與裂變(fission)...16
2-5 微胞的應用...22
2-6 實驗動機...26
第三章 實驗...27
3-1高分子材料...27
3-2 溶劑藥品與基材...28
3-3 實驗儀器...28
3-4 試片製備與實驗步驟...29
3-4-1清洗基材...29
3-4-2基材表面改質...29
3-4-3 P(S-b-4VP)薄膜的製備...30
3-5 儀器分析...32
3-5-1原子力顯微鏡...32
3-5-2光學顯微鏡...33
3-5-3場發射掃描式電子顯微鏡...34
3-5-4高解析X光繞射儀...35
3-5-5低掠角X光散射儀...36
3-5-6近緣X 光吸收細微結構光譜 (NEXAFS)...36
3-5-7 X光電子能譜...37
第四章 結果與討論...39
4-1基材表面性質對P(S-b-4VP)薄膜結構的影響...39
4-1-1覆蓋率對於P(S-b-4VP)微胞在矽基材上動態結構變化的影響...39
4-1-2 P(S-b-4VP)微胞旋鍍在不同基材上的形態變化...43
4-1-3不同長度的PS毛刷對於微胞形態的影響...50
4-1-4利用乙醇進行薄膜表面重組,分析THF溶劑退火後的垂直與水平狀圓柱結構...56
4-2 微胞在具微米陣列基材上的層級自組裝(Hierarchical Self-assembly)...60
4-2-1以光微影製程製備具層級結構之薄膜...60
4-2-2以微米壓印製程製備具層級結構之薄膜...63
4-3基材界面能變化對於雙親性團鏈共聚物結構形態的影響...67
4-3-1 PS4k-SiOx基材照射UVO後的表面性質變化...67
4-3-2 微胞在照射UVO後的PS4k-SiOx基材上形態的轉變...74
第五章 結論...87
參考文獻...89
附錄...99
參考文獻 1.Qiao, Y.; Wang, D.; Buriak, J. M. “Block Copolymer Templated Etching on Silicon”, Nano Lett., 7, 464-469(2007).
2.Park, S.; Wang, J. –Y.; Kim, B.; Russell T. P. “From Nanorings to Nanodots by Patterning with Block Copolymers”, Nano Lett., 8, 1667-1672(2008).
3.Park, S.; Kim, B.; Wang, J. –Y.; Russell T. P. “Fabrication of Highly Ordered Silicon Oxide Dots and Stripes from Block Copolymer Thin Films”, Adv. Mater., 20, 681-685(2008).
4.Aizawa, M.; Buriak, J. M. “Block Copolymer-Templated Chemistry on Si, Ge, InP, and GaAs Surfaces”, J. Am. Chem. Soc., 127, 8932-8933(2005).
5.Aizawa, M.; Buriak, J. M. “Block Copolymer Templated Chemistry for the Formation of Metallic Nanoparticle Arrays on Semiconductor Surfaces”, Chem. Mater., 19, 5090-5101(2007).
6.Kim, Y.; Han, H.; Kim, Y.; Lee, W.; Alexe, M.; Baik, S.; Kim, J. K. “Ultrahigh Density Array of Epitaxial Ferroelectric Nanoislands on Conducting Substrates”, Nano Lett., 10, 2141-2146(2010).
7.Yun, S. –H.; Yoo, S. I.; Jung, J. C.; Zin, W. –C.; Sohn, B. –H. “ Highly Ordered Arrays of Nanoparticles in Large Areas from Diblock Copolymer Micelles in Hexagonal Self-Assembly”, Chem. Mater., 18, 5646-5648(2006).
8.Boyen, H. –G.; Kästle, G.; Zürn, K.; Herzog, T.; Weigl, F.; Ziemann, P.; Mayer, O.; Jerome, C.; Möller, M.; Spatz, J. P.; Garnier, M. G.; Oelhafen, P. “A Micellar Route to Ordered Arrays of Magnetic Nanoparticles: From Size-Selected Pure Cobalt Dots to Cobalt-Cobalt Oxide Core-Shell systems”, Adv. Func. Mater., 13, 359-364(2003).
9.Spatz, J. P.; Chan, V. Z. –H.; Mö?mer, S.; Kamm, F. M.; Plettl, A.; Ziemann, P.; Möller, M. “A Combined Top-Down/Bottom-Up Approach to the Microscopic Localization of Metallic Nanodots”, Adv. Mater., 14, 1827-1832(2002).
10.Lohmueller, T.; Bock, E.; Spatz, J. P. “Synthesis of Quasi-Hexagonal Ordered Arrays of Metallic Nanoparticles with Tuneable Particle Size”, Adv. Mater., 20, 2297-2302(2008).
11.Chai, J.; Buriak, J. M. “Using Cylindrical Domains of Block Copolymers To Self-Assemble and Align Metallic Nanowires”, ACS Nano, 2, 489-501(2008).
12.Peinemann, K. –V. Abetz, V.; Simon, P. F. W. “Asymmetric Superstructure Formed in a Block Copolymer Via Phase Separation”, Nat. Mater., 6, 992-996(2007).
13.Förster, S.; Antonietti, M. “Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids”, Adv. Mater., 10, 195-217(1998).
14.Förster, S.; Plantenberg, T. “From Self-Organizing Polymers to Nanohybrid and Biomaterials”, Angew. Chem. Int. Ed., 41, 688-714(2002).
15.Numes, S. P. Sougrat, R.; Hooghan, B.; Anjum, D. H.; Behzad, A. R.; Zhao, L.; Pradeep, N.; Pinnau, I.; Vainio, U.; Peinemann, K. –V. “Ultraporous Films with Uniform Nanochannels by Block Copolymer Micelles Assembly”, Macromolecules, 43, 8079-8085(2010).
16.Park, S.; Kim, B.; Xu, J.; Hofmann, T.; Ocko, B. M.; Russell, T. P. “Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor”, Macromolecules, 42, 1278-1284(2009).
17.Park, S.; Wang, J.-Y.; Kim, B.; Chen, W.; Russell, T. P. “Solvent-Induced Transition from Micelles in Solution to Cylindrical Microdomains in Diblock Copolymer Thin Films”, Macromolecules, 40, 9059-9063(2007).
18.Park, S.; Wang, J.-Y.; Kim, B.; Xu, J.; Russell,T. P. “ A Simple Route to Highly Oriented and Ordered Nanoporous Block Copolymer Templates”, ACS Nano, 2, 766-772(2008).
19.Park, S.; Kim, B.; Yavuzcetin, O.; Tuominen, M. T.; Rusell, T. P. “Ordering of PS-b-P4VP on Patterned Silicon Surfaces”, ACS Nano, 2, 1363-1370(2008).
20.Riess, G. Prog. “Micellization of Block Copolymers”, Polym. Sci., 28, 1107-1170(2003).
21.Nandan, B.; Gowd, E. B.; Bigall, N. C.; Eychmüller, Formanek, P.; Simon, P.; Stamm, M. “Arrays of Inorganic Nanodots and Nanowires Using Nanotemplates Based on Switchable Block Copolymer Supramolecular Assemblies”, Adv. Func. Mater., 19, 2805-2811(2009).
22.Gowd, E. B.; Nandan, B.; Vyas, M. K.; Bigall, N. C.; Eychmüller, A.; Schlörb, H.; Stamm, M. “Highly Ordered Palladium Nanodots and Nanowires from Switchable Block Copolymer Thin Films”, Nanotechnology, 20, 415302_1-415302_10(2009).
23.Kim, T. H.; Huh, J.; Huang, J.; Kim, H. -C. Kim, S. H.; Sohn, B. –H.; Park, C. “Ordered Arrays of PS-b-P4VP Micelles by Fusion and Fission Process upon Solvent Annealing”, Macromolecules, 42, 6688-6697(2009).
24.Matsen M. W., Bates F. S. “Unifying Weak- and Strong-Segregation Block Copolymer Theories”, Macromolecules, 29, 1091-1098(1996).
25.Khandpur, A. K., Foerster, S., Bates, F. S., Hamley, I. W., Ryan, A. J., Bras, W., Almdal, K., Mortensen, K. “Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition”, Macromolecules, 28, 8796–8806(1995).
26.Zhisheng Gaot and Adi Eisenberg, “A Model of Micellization for Block Copolymers in Solutions”, Macromolecules, 26, 7353-7360(1993).
27.Cao, L.; Manners, I.; Winnik, M. A. “Synthesis and Self-Assembly of the Organic−Organometallic Diblock Copolymer Poly(isoprene-b-ferrocenylphenylphosphine): Shell Cross-Linking and Coordination Chemistry of Nanospheres with a Polyferrocene Core“, Macromolecules, 34, 3353-3360(2001).
28.Chen, Z.; Cui, H.; Hales, K.; Li, Z.; Qi, K.; Pochan, D. J.; Wooley, K. L. “Unique Toroidal Morphology from Composition and Sequence Control of Triblock Copolymers”, J. Am. Chem. Soc., 127, 8592-8593(2005).
29.Jains, S.; Bates, F. S. “On the Origins of Morphological Complexity in Block Copolymer Surfactants”, Science, 300, 460-464(2003).
30.Zhang, L.; Eisenberg, A. “Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-Poly(acrylic acid) Block Copolymers”, Science, 268, 1728-1731(1995).
31.Dreiss, C. A. “Wormlike Micelles: Where Do We Stand? Recent Developments, Linear Rheology and Scattering Techniques”, Soft Matter, 3, 956-970(2007).
32.Zakir,M. R.; Dincer, S.; Piskin, E. “Functional Copolymers of N-isopropylacrylamıde for Bioengineering Applications”, Prog. Polym. Sci., 32, 534-595(2007).
33.Na, K.; Lee, K. H.; Bae, Y. H. “pH-sensitivity and pH-dependent Interior Structural Change of Self-assembled Hydrogel Nanoparticles of Pullulan Acetate/Oligo-sulfonamide Conjugate “, J. Controlled Release, 97, 513-525(2004).
34.Wang, D.; Yin, J.; Zhu, Z.; Ge, Z.; Liu, H.; Armes, S. P.; Liu, S. “Micelle Formation and Inversion Kinetics of a Schizophrenic Diblock Copolymer”, Macromolecules, 39, 7378-7385(2006)
35.Hiemenz, P. C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry, 3rd ed.; Marcel Dekker: New York, 1997.
36.Loh, W. “Block Copolymer Micelles”, Encyclopedia of Surface and Colloid Science, 802-813(2006).
37.Mortensen K. Small angle scattering studies of block copolymer micelles, micellar mesophases and networks. In: Alexandridis P, Lindman B, editors. Amphiphilic block copolymers: self assembly and applications. Amsterdam: Elsevier; 2000. p. 191–220.
38.Zana R. Fluorescence studies of amphiphilic block copolymers in solution. In: Alexandridis P, Lindman B, editors. Amphiphilic block copolymers: self assembly and applications. Amsterdam: Elsevier; 2000. p. 221–252.
39.Chu B., Zhou Z. Physical chemistry of polyoxyalkylene block copolymer surfactants. In: Nace VM, editor. Nonionic surfactants: polyoxyalkylene block copolymers. Surfactant science series 60, New York: Marcel Dekker; 1996. p. 67–143.
40.B. Chu and Z. Zhou, in Nonionic Surfactants, Vol. 60, Marcel Dekker, Inc., New York, 1967.
41.D. G. Hall, in Nonionic Surfactants: Physical Chemistry, Chapter 5, M. J. Schick, Ed., Marcel Dekker, Inc., New Yorkand Basel, 1987.
42.D. Attwood and A. T. Florence, in Surfactant Systems: Their Chemistry, Pharmacy and Biology, Chapman & Hall, London, 1983.
43.Förster, S.; Zisenis, M.; Wenz, E.; Antonietti, M. “Micellization of Strongly Segregated Block Copolymers”, J. Chem. Phys., 104, 9956-9970(1996).
44.Leibler, L.; Orland, H.; Wheeler, J. C. “Theory of Critical Micelle Concentration for Solutions of Block Copolymers”, J. Chem. Phys., 79, 3550-3557(1983).
45.Munch, M. R.; Gast, A. P. “Block Copolymers at Interfaces. 1. Micelle Formation”, Macromolecules, 21, 1360-1366(1988).
46.Munch, M. R.; Gast, A. P. “Block Copolymers at Interfaces. 2. Surface Adsorption”, Macromolecules, 21, 1366-1372(1988).
47.Marques, C.; Joanny, J. F.; Leibler, L. “Adsorption of Block Copolymers in Selective Solvents”, Macromolecules, 21, 1051-1059(1988).
48.Marques, C.; Joanny, J. F. “Block Copolymer Adsorption in a Nonselective Solvent”, Macromolecules, 22, 1454-1458(1989).
49.Johner, A.; Joanny, J. F. “Block Copolymer Adsorption in a Selective Solvent: A Kinetic Study”, Macromolecules, 23, 5299-5311(1990).
50.Spatz, J. P.; Möller, M.; Noeske, M.; Behm, R. J.; Pietralla, M. “Nanomosaic Surfaces by Lateral Phase Separation of a Diblock Copolymer”, Macromolecules, 30, 3874-3880(1997).
51.Spatz, J. P.; Sheiko, S.; Möller, M. “Substrate-Induced Lateral Micro-Phase Separation of a Diblock Copolymer”, Adv. Mater., 8, 513-517(1996).
52.Kramarenko, E. Y.; Potemkin, I. I.; Khokhlov, A. R.; Winkler, R. G.; Reineker, P. “Surface Micellar Nanopattern Formation of Adsorbed Diblock Copolymer Systems”, Macromolecules, 32, 3495-3501(1999).
53.Potemkin, I. I.; Kramarenko, E. Y.; Khokhlov, A. R.; Winkler, R. G.; Reineker, P.; Eibeck, P.; Spatz, J. P.; Möller, M. “Nanopattern of Diblock Copolymers Selectively Adsorbed on a Plane Surface”, Langmuir, 15, 7290-7298(1999).
54.Motschmann H.; Stamm, M.; Toprakcioglu, C. “Adsorption Kinetics of Block Copolymers from a Good Solvent: A Two-Stage Process”, Macromolecules, 24, 3681-3688(1991).
55.Helfand, E.; Tagami, Y. “Theory of the Interface Between Immiscible Polymers”, J. Polym. Sci., Part B, 9, 741-746(1971).
56.P. J. Flory, in Principles of Polymer Chemistry, Chapter 12 , Cornell University Press, Ithaca, New York, 1953.
57.Zhang, L.; Eisenberg A. “ Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions”, J. Am. Chem. Soc., 118, 3168-3181(1996).
58.Yu, Y.; Eisenberg A. “Control of Morphology Through Polymer-Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymers”, J. Am. Chem. Soc., 119, 8383-8384(1997).
59.Shen, H.; Zhang, L.; Eisenberg, A. “Multiple pH-Induced Morphological Changes in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H2O Mixtures”, J. Am. Chem. Soc., 121, 2728-2740(1999).
60.Yu, Y.; Zhang, L.; Eisenberg, A. “Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers“, Macromolecules, 31, 1144-1154(1998).
61.Denkova, A. G.; Mendes, E.; Coppens, M. –O. “Kinetics and Mechanism of the Sphere-to-Rod Transition of Triblock Copolymer Micelles in Aqueous Solutions”, J. Phys. Chem. B, 113, 989-996(2009).
62.Burke, S. E., Eisenberg, A. “Kinetics and Mechanisms of the Sphere-to-Rod and Rod-to-Sphere Transitions in the Ternary System PS310-b-PAA52/Dioxane/Water”, Langmuir, 17, 6705-6714(2001).
63.Denkova, A. G.; Mendes, E.; Coppens, M. –O. “ Non-equilibrium Dynamics of Block Copolymer Micelles in Solution: Recent Insights and Open Questions”, Soft Matter, 6, 2351-2357(2010).
64.Lund, R.; Pipich, V.; Willner, L.; Radulescu, A.; Colmenero, J.; Richter, D. “Structural and Thermodynamic Aspects of the Cylinder-to-Sphere Transition in Amphiphilic Diblock Copolymer Micelles”, Soft Matter, 7, 1491-1500(2011).
65.Lee, S. J.; Park, M. J. “Morphological Manipulation of Ionic Block Copolymer Micelles Using an Electric Field“, Langmuir, 26(23), 17827–17830(2010)
66.Du, H.,; Zhu, J.; Jiang, W. “Study of Controllable Aggregation Morphology of ABA Amphiphilic Triblock Copolymer in Dilute Solution by Changing the Solvent Property“, J. Phys. Chem. B, 111, 1938-1945(2007).
67.Lo, C. L.; Huang, C. K.; Lin, K. M.; Hsiue G. H. “Mixed Micelles Formed from Graft and Diblock Copolymers for Application in Intracellular Drug Delivery”, Biomaterials, 28, 1225-1235(2007).
68.Glass, R.; Arnold, M.; Blümmel, J.; Küller, A.; Möller, M.; Spatz, J. P. ”Micro-Nanostructured Interfaces fabricated by the Use of Inorganic Block Copolymer Micellar Monolayer as Negative Resist for Electron-Beam Lithography”, Adv. Funct. Mater., 13, 569-575(2003).
69.殷敬華, 莫志深,現代高分子物理學,一版,科學出版社出版,北京,2003
70.Parratt, L. G. “Surface Studies of Solids by Total Reflection of X-Rays”, Phys. Rev., 95, 359-369(1954).
71.Esselink, F. J.; Dormidontova, E. E.; Hadziioannou, G. “Redistribution of Block Copolymer Chains between Mixed Micelles in Solution”, Macromolecules, 31, 4873-4878(1998).
72.Esselink, F. J.; Dormidontova, E. E. ; Hadziioannou, G. “Evolution of Block Copolymer Micellar Size and Structure Evidenced with Cryo Electron Microscopy”, Macromolecules, 31, 2925-2932(1998).
73.Zhao, B.; Brittain, W. J. “Polymer Brushes: Surface-Immobilized Macromolecules”, Prog. Polym. Sci., 25, 677-710(2000).
74.Zhang, X.; Lee, F. K.; Tsui, O. K. C. “Wettability of End-Grafted Polymer Brush by Chemically Identical Polymer Films”, Macromolecules, 41, 8148-8151(2008).
75.Santer, S.; Kopyshev, A.; Donges, J.; Yang, H.-K.; Rühe, J. “Dynamically Reconfigurable Polymer Films: Impact on Nanomotion”, Adv. Mater., 18, 2359-2362(2006).
76.Smith, G. D.; Bedrov, D.; Borodin, O. ”Structural Relaxation and Dynamic Heterogeneity in a Polymer Melt at Attractive Surfaces”, Phys. Rev. Lett., 90, 226103_1-226103_4(2003).
77.Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P. “Macroscopic 10-Terabit-per-Square-Inch Arrays from Block Copolymers with Lateral Order”, Science, 323, 1030-1033(2009).
78.Sun, Y.-S.; Chien, S. –W.; Liou, J. –Y., “Film Instability Induced Evolution of Hierarchical Structures in Annealed Ultrathin Films of an Asymmetric Block Copolymer on Polar Substrates “, Macromolecules, 43, 7250-7260(2010).
79.Klein, R. J.; Fischer D. A.; Lenhart, J. L. “Systematic Oxidation of Polystyrene by Ultraviolet-Ozone, Characterized by Near-Edge X-ray Absorption Fine Structure and Contact Angle”, Langmuir, 24, 8187-8197(2008).
80.Browne, M. M.; Lubarsky, G. V.; Davidson, M. R.; Bradley, R. H. “Protein Adsorption Onto Polystyrene Surfaces Studied by XPS and AFM “, Surf. Sci., 553, 155-167(2004).
81.Teare, D. O. H.; Emmison, N.; Ton-That, C.; Bradley, R. H.; “Cellular Attachment to Ultraviolet Ozone Modified Polystyrene Surfaces”, Langmuir, 16, 2818-2824(2000).
82.Ton-That, C.; Teare, D. O. H.; Cambell, P. A.; Bradley, R. H. “Surface Characterisation of Ultraviolet-Ozone Treated PET Using Atomic Force Microscopy and X-ray Photoelectron Spectroscopy “, Surf. Sci., 433-435, 278-282(1999).
83.Wang, J.; Tolan, M.; Seeck, O. H.; Sinha, S. K.; Bahr, O.; Rafailovich, M. H.; Sokolov, “Surfaces of Strongly Confined Polymer Thin Films Studied by X-Ray Scattering”, J. Phys. Rev. Lett., 83, 564-567(1999).
84.Kerle, T.; Yerushalmi-Rozen, R.; Klein, J. “Cross-link–Induced Autophobicity in Polymer Melts: A Re-entrant Wetting Transition”, Europhys. Letts., 38, 207-212(1997).
85.Jeong, S. –J. Xia, G.; Kim, B. H.; Shin, D. O.; Kwon, S. –H.; Kang, S. –W.; Kim, S. O. “Universal Block Copolymer Lithography for Metals, Semiconductors, Ceramics, and Polymers”, Adv. Mater., 20, 1898-1904(2008).
86.Kim, B. H.; Kim, J. Y.; Jeong, S. –J.; Hwang, J. O.; Lee, D. H.; Shin, D. O.; Choi, S. –Y.; Kim, S. O. “Surface Energy Modification by Spin-Cast, Large-Area Graphene Film for Block Copolymer Lithography”, ACS Nano, 4, 5464-5470(2010).
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2011-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明