博碩士論文 983204049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.146.105.137
姓名 張毅輝(Yi-hui Zhang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高分子接枝層調控對稱型雙嵌段共聚物層狀奈米微相結構之排向
(A Study on surface morphologies of grafted or anchored layers and effects of tunable surface fields on orientations of lamellae within P(S-b-MMA) thin films)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分別探討接枝在矽基材表面之高分子接枝層之微結構以及利用此高分子接枝層進一步調控對稱型雙嵌段共聚物薄膜之層狀微相奈米結構之排向探討。
第一部份,探討接枝在矽基材表面之高分子接枝層之微結構相形態。此研究利用尾端接有氫氧基之聚苯乙烯均聚物(polystyrene, PS)、聚甲基丙烯酸甲酯均聚物(poly(methyl methacrylate), PMMA))及其兩成份混摻體(binary blends:PS/PMMA),進行化學接枝(grafting)方法改質矽基材表面。或是利用(加入)低分子量對稱型聚苯乙烯聚甲基丙烯酸甲酯雙嵌段共聚物塗佈於矽基材上,進行物理錨定(anchoring)方法,錨定於矽晶基材上。並藉由三成份混摻體進行矽基材表面改質。進一步利用光學顯微鏡,觀察高分子接枝層薄膜之表面除潤形貌。並利用X光反射量測高分子之接枝層薄膜厚度並定量分析高分子之接枝密度。並利用原子力顯微鏡觀察表面高分子接枝層之表面形貌,建立高分子混摻體(兩成份PS/PMMA或是三成份PS/PMMA/P(S-b-MMA)混摻)接枝層之組成與形態之關係。其實驗結果顯示高分子接枝層之表面形貌,受到混摻組成不同,而呈現不同的表面形貌。分別有波浪狀形貌(ripple)結構及類似顆粒狀(dimple)形貌之結構。進而加入低分子量之雙嵌段共聚物,亦可使表面呈波浪狀表面形貌。
第二部份利用分子接枝層進一步調控高分子量對稱型雙嵌段共聚物之層狀微相奈米結構之排向。由於對稱型雙嵌段共聚物層狀奈米結構受高分子接枝層與薄膜厚度的影響,分別會呈現水平排向、垂直排向以及混合排向。分別由原子力顯微鏡觀察以及低掠角X光散射實驗量測,可清楚觀察雙嵌段共聚物薄膜的表面與內部之層狀奈米結構之排向。
摘要(英) In this thesis, I explored the surface morphologies of grafted layers of low-molecular-weight homopolymers (PS and PMMA) or anchored ones of low-molecular-weight diblock copolymer (P(S-b-MMA)) on top of SiOx/Si. The grafted layers of mixed binary homopolymers (PS/PMMA) of various compositions or those of ternary blends (PS/PMMA/P(S-b-MMA) of various fractions were also investigated for comparisons. The surface morphologies and height profiles were characterized by using atomic force microscopy (AFM), X-ray reflectivity (XRR), and optical microscopy (OM). Grafted PS with a high grafting density on SiOx/Si was found to have a homogenously smooth surface, indicative of a brush conformation. The AFM image of grafted PMMA with a relative density on SiOx/Si displayed the formation of uniform PMMA clusters. The clustering of grafted PMMA chains was ascribed to an inter-chain affinity among the polar carboxyl groups of PMMA chains. By contrast, anchored P(S-b-MMA) revealed a ripple-like morphology. For grafted layers of binary PS/PMMA and ternary PS/PMMA/P(S-b-MMA), their surface morphologies varied with the mixed compositions. The surface morphology was dominantly governed by the major component in binary or ternary mixtures.
Next, by using grazing-incident small-angle scattering (GISAXS) I further investigated the orientation of lamellar nanodomains within thin films of symmetric P(S-b-MMA) of high molecular weight on silicon substrates with tunable polymer-substrate interfacial fields. The varied surface fields of silicon substrates were prepared by grafting a layer of short PS or PMMA chains, or by anchoring a layer of short P(S-b-MMA) chains. It was demonstrated that in most cases, mixed orientations of vertical and parallel lamellae were present in P(S-b-MMA) thin films. Only substrates coated with end-anchoring P(S-b-MMA) chains led to a vertical orientation of lamellae existing through the whole film thickness.
關鍵字(中) ★ 排向性質
★ 表面形貌
★ 高分子接枝層
關鍵字(英) ★ orientation
★ surface morphology
★ grafted layer of polymer
論文目次 摘要---------------------------------------------i
Abstract-----------------------------------------ii
致謝---------------------------------------------iv
目錄---------------------------------------------v
圖目錄-------------------------------------------viii
表目錄-------------------------------------------xvi
第一章: 緒論-------------------------------------1
第二章: 簡介-------------------------------------4
 2-1 高分子接枝---------------------------------4
  2-1-1 均聚物高分子接枝層---------------------4
  2-1-2 雙成份系統混摻高分子接枝層-------------6
 2-2 共聚物接枝介紹-----------------------------8
  2-2-1 雙嵌段共聚物接枝層形態-----------------9
  2-2-2 Y形共聚物毛刷介紹----------------------11
 2-3 高分子鏈段嫁接方式-------------------------13
  2-3-1 物理吸附-------------------------------14
  2-3-2 嫁接到方式-----------------------------14
  2-3-3 嫁接從方式-----------------------------15
 2-4 高分子鏈微結構之調控-----------------------16
  2-4-1 溶劑效應-------------------------------16
  2-4-2 溫度效應-------------------------------17
  2-4-3 酸鹼值效應-----------------------------20
 2-5 均聚物接枝毛刷層之應用---------------------22
  2-5-1 控制雙嵌段共聚物自組裝之排向-----------22
  2-5-2 探針之表面改質-------------------------25
  2-5-3 奈米感應器-----------------------------26
  2-5-4 奈米粒子移動---------------------------27
  2-5-5 表面之親疏水性-------------------------28
 2-6 雙嵌段共聚物之自組裝行為-------------------29
  2-6-1 厚度侷限效應---------------------------31
  2-6-2 薄膜與界面間之作用力-------------------33
  2-6-3 粗糙度效應-----------------------------34
第三章:實驗部分----------------------------------36
 3-1 實驗藥品溶劑與基材介紹---------------------36
  3-1-1 均聚物高分子---------------------------36
  3-1-2 雙嵌段共聚物高分子---------------------36
 3-2 試片製備與實驗方法-------------------------37
  3-2-1 基材清洗-------------------------------37
3-2-2 高分子接枝層之製備---------------------38
  3-2-3 雙嵌段共聚合物薄膜之製備---------------38
 3-3 實驗器材介紹-------------------------------39
  3-4-1 光學顯微鏡-----------------------------40
  3-4-2 原子力顯微鏡---------------------------41
  3-4-3 X光反射率掃描量測----------------------43
  3-4-4 X光電子能譜儀--------------------------44
  3-4-5 低掠角X光散射--------------------------45
第四章:結果與討論--------------------------------48
 4-1 單一成份之均聚物接枝層表面形態-------------48
 4-2 雙成份之單質均聚合物混摻接枝探討-----------63
 4-3 混摻低分子量雙嵌段共聚物影響---------------66
 4-4氧氣離子蝕刻效應探討------------------------78
 4-5雙嵌段共聚物排向探討------------------------82
  4-5-1 改質層之組成成份效應探討---------------83
  4-5-2 厚度效應-------------------------------94
第五章:結論-------------------------------------110
參考文獻----------------------------------------112
參考文獻 [1] Tsujii Y., Ohno K., Yamamoto S., Goto A., Fukuda T. “Structure and Properties of High-Density Polymer Brushes Prepared by Surface- Initiated Living Radical Polymerization”, Adv. Polym. Sci., 197, 1-45 (2006)
[2] Poetes R. M. H.“Dynamic and static conformations at the water-solid interface”, Dissertation (2009)
[3] Stamm M., Minko S., Arndt K. F. “Switching of Surface Composition and Morphology of Binary Polymer Brushes”, Dissertation (2004)
[4] Minko S., Müller M., Usov D., Scholl A., Froeck C., and Stamm1 M. “Lateral versus Perpendicular Segregation in Mixed Polymer Brushes”, Phys. Rev. Lett., 88, 035502-1-035502-4 (2002)
[5] Müller M. “Phase diagram of a mixed polymer brush”, Phys. Rev. E, 65, 030802-1-030802-4 (2002)
[6] Usov D., Gruzdev V., Nitschke M., Stamm M., Hoy O., Luzinov I., Tokarev I., Minko S. “Three-Dimensional Analysis of Switching Mechanism of Mixed Polymer Brushes”, Macromolecules, 40, 8774-8783 (2007)
[7] Gersappe G., Fasolka M., Israels R., Balazs A. C. “Modeling the Behavior of Random Copolymer Brushes,” Macromolecules, 28, 4753-4755 (1995)
[8] Zhulina E. B., Singh C., Balazs A. C.,“Forming Patterned Films with Tethered Diblock Copolymers”, Macromolecules, 29, 6338-6348 (1996)
[9] Zhulina E. B., Singh C., Balazs A. C. “Self-Assembly of Tethered Diblocks in Selective Solvents”, Macromolecules, 29, 8254-8259 (1996)
[10] Tomlinson M. R. Genzer J. “Evolution of Surface Morphologies in Multivariant Assemblies of Surface-Tethered Diblock Copolymers after Selective Solvent Treatment”, Langmuir, 21, 11552-11555 (2005)
[11] Guskova O. A., Seidel C. “Mesoscopic Simulations of Morphological Transitions of stimuli-Responsive Diblock Copolymer Brushes”, Macromolecules, 44, 671-682 (2011)
[12] Wang J., Mu¨ ller M. “Microphase Separation of Diblock Copolymer Brushes in Selective olvents: Single-Chain-in-Mean-Field Simulations and Integral eometry Analysis”, Macromolecules, 42, 2251-2264 (2009)
[13] Zhao B., Brittain W. J., Zhou W., Cheng S. Z. D. “Nanopattern Formation from Tethered PS-b-PMMA Brushes upon Treatment with Selective Solvents”, J. Am. Chem. Soc., 122, 2407-2408 (2000)
[14] Yin Y., Sun P., Li B., Chen T., Jin Q., Ding D., Shi A. C. “A Simulated Annealing Study of Diblock Copolymer Brushes in Selective Solvents”, Macromolecules, 40, 5161-5170 (2007)
[15] Singh C., Balazs A. C. “Interactions between Polymer-Coated Surfaces in Poor Solvents. 2. Surfaces Coated with AB Diblock Copolymers”, Macromolecules, 29, 8904-8911 (1996)
[16] Zhao B., Brittain W. J., Zhou W., Cheng S. Z. D. “AFM Study of Tethered Polystyrene-b-poly(methyl methacrylate) and Polystyrene -b-poly(methyl acrylate) Brushes on Flat Silicate Substrates”, Macromolecules, 33, 8821-8827 (2000)
[17] Julthongpiput D., Lin Y. H., Teng J., Zubarev E. R., Tsukruk V. V., “Y-Shaped Polymer Brushes: Nanoscale Switchable Surfaces”, Langmuir, 19, 7832-7836 (2003)
[18] Zhulina E., Balazs A. C.,“Designing Patterned Surfaces by Grafting Y-Shaped Copolymers”, Macromolecules, 29, 2667-2673 (1996)
[19] Julthongpiput D., Lin Y. H., Teng J., Zubarev E. R., Tsukruk V. V. “Y-Shaped Amphiphilic Brushes with Switchable Micellar Surface Structures”, J. Am. Chem. Soc., 125, 15912-15921 (2003)
[20] Lin Y.H., Teng J., Zubarev E. R., Shulha H., Tsukruk V. V.“In-situ Observation of Switchable Nanoscale Topography for Y-Shaped Binary Brushes in Fluids”, Nano Lett., 5, 491-495 (2005)
[21] Zhao B., Brittain W. J. “Polymer brushes: surface-immobilized macromolecules”, Polym. Sci., 25, 677-710 (2000)
[22] Wilshaw C. “Directed Phase Separation of Polymer Blends on Binary-Patterned Polymer Brushes”, Dissertation (2010)
[23] Zhao B., Haasch R. T., MacLaren S. “Self-reorganization of mixed poly(methyl methacrylate)/polystyrene brushes on planar silica substrates in response to combined selective solvent treatments and thermal annealing”, Polymer, 45, 7979-7988 (2004)
[24] Zhao B. “A Combinatorial Approach to Study Solvent-Induced Self-Assembly of Mixed Poly(methyl methacrylate)/Polystyrene Brushes on Planar Silica Substrates: Effect of Relative Grafting Density”, Langmuir, 20, 11748-11755 (2004)
[25] Sidorenko A., Minko S., Karin S.M., Heinz D., Manfred S. “Switchinge of Polymer Brushes”, Langmuir, 15, 8349-8355 (1999)
[26] Soga K. G., Zuckermann M. J., Guo H. “Binary Polymer Brush in a Solvent”, Macromolecules, 29, 1998-2005 (1996)
[27] Singh C., Pickett G. T., Balazs A. C.“Interactions between Polymer -Coated Surfaces in Poor Solvents. Surfaces Grafted with A and B Homopolymers”, Macromolecules, 29, 7559-7570 (1996)
[28] Ionov L., Zdyrko B., Sidorenko A., Minko S., Klep V., Luzinov I., Stamm1 M. “Gradient Polymer Layers by Grafting To Approach”, Macromol. Rapid Commun., 25, 360-365 (2004)
[29] Schild H. G. “Poly(N-isopropylacrylamide): experiment, theory and application”, Polym. Sci., 17, 163-249 (1992)
[30] Sun T., Wang G., Feng L., Liu B., Ma Y., Jiang L., Zhu D. “Reversible Switching between Superhydrophilicity and Superhydrophobicity”, Angew. Chem. Int. Ed., 43, 357-360 (2004)
[31] Azzaroni O., Brown A. A., Huck W. T. S. “UCST Wetting Transitions of Polyzwitterionic Brushes Driven by Self-Association”, Angew. Chem. Int. Ed., 45, 1770-1774 (2006)
[32] Houbenov N., Minko S., Stamm M. “Mixed Polyelectrolyte Brush from Oppositely Charged Polymers for Switching of Surface Charge and Composition in Aqueous Environment”, Macromolecules, 36, 5897-5901 (2003)
[33] Mikhaylova Y., Ionov L., Rappich J., Gensch M., Esser N., Minko S. “In Situ Infrared Ellipsometric Study of Stimuli-Responsive Mixed Polyelectrolyte Brushes”, Anal. Chem., 79, 7676-7682 (2007)
[34] Motornov M., Sheparovych R., Katz E., Minko S. “Chemical Gating with Nanostructured Responsive Polymer Brushes: Mixed Brush versus Homopolymer Brush”, ACS nano, 2, 41-52 (2008)
[35] Ji S., Liu G., Zheng F., Craig G. S. W., Himpsel F. J., Nealey P. F. “Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends”, Adv. Mater., 20, 3054-3060 (2008)
[36] Liu G., Ji S., Stuen K. O., Craig S. W. G., Nealey P. F. “Modification of a polystyrene brush layer by insertion of poly(methyl Methacrylate) molecules” , J. Vac. Sci. Technol. B, 27, 3038-3042 (2009)
[37] Zhou F., Biesheuvel P. M., Choi E. Y., Shu W., Poetes R., Steiner U., Huck W. T. S. “Polyelectrolyte Brush Amplified Electroactuation of Microcantilevers”, Nano Lett., 8, 725-730 (2008)
[38] Tokareva I., Minko S., Fendler J. H., Hutter E. “Nanosensors Based on Responsive Polymer Brushes and Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy”, J. Am. Chem. Soc., 126, 15950-15951 (2004)
[39] Mendes P. M. “Stimuli-responsive surfaces for bio-applications”, Chem. Soc. Rev., 37, 2512-2529 (2008)
[40] Chen T., Ferris R., Zhang J., Ducker R., Zauscher S. “Stimulus- responsive polymer brushes on surfaces: Transduction mechanisms and applications”, Polym. Sci., 35, 94-112 (2010)
[41] stuart M. A. C., Huck W. T. S., Genzer J., Muller M., ober C.,Stamm M., Sukhorukov G. b., Szleifer I., Tsukruk V. V., Urban M.,Winnik F., Zauscher S., Luzinov I., Minko S. “Emerging applications of stimuli-responsive polymer materials”, Nature Mater., 9, 101-113 (2010)
[42] Zhou F., Huck W. T. S.“Surface grafted polymer brushes as ideal building blocks for smart surfaces”, Phys. Chem. Chem. Phys., 8, 3815-3823 (2006)
[43] Bawa P., Pillay V., Choonara Y. E., Toit C. D. “Stimuli- responsive polymers and their applications in drug delivery”, Biomed. Mater., 4, 022001-1-022001-15 (2009)
[44] Yu K., Wang H., Han Y. “Motion of Integrated CdS Nanoparticles by Phase Separation of Block Copolymer Brushes”, Langmuir, 23, 8957- 8964 (2007)
[45] Santer S., He J. R. R.“Motion of nano-objects on polymer brushes”, Polymer, 45, 8279-8297 (2004)
[46] Zhouab F., Huck W. T. S. “Three-stage switching of surface wetting using phosphate-bearing polymer brushes”, Chem. Commun., 5999- 6001 (2005)
[47] Bunker B. C., Huber D. L., Kent M. S., Yim H., Curro J. G.,Manginell R. J., Kushmerick J. G., Lopez G. P., Mendez S. “Switchable Hydrophobic-Hydrophilic Surfaces” , Sand Report (2002)
[48] Azzaroni O., Brown A. A., Huck W. T. S. “Tunable Wettability by Clicking Counterions Into Polyelectrolyte Brushes”, Adv. Mater., 19, 151-154 (2007)
[49] Jenkins A. D., Kratochvfl P., Stepto R. F. T., Suter U. W. “GLOSSARY OF BASIC TERMS IN POLYMER SCIENCE”, Pure & Appl. Chem., 68, 2287-2311 (1996)
[50] Matsen M. W., Bates F. S. “Unifying Weak- and Strong-Segregation Block Copolymer Theories”, Macromolecules, 29, 1091-1098 (1996)
[51] Fredrickson G. H. Liu A. J. “Entropic Corrections to the Flory- Huggins Theory of Polymer Blends: Architectural and Conformational Effects”, Macromolecules, 27, 2503-2511 (1994)
[52] Tseng Y. C., Darling S. B. “Block Copolymer Nanostructures for Technology”, Polymers, 2, 470-489 (2010)
[53] Bates F. S., Fredrickson G. H. “Block Copolymers-Designer Soft Materials”, Phys. Today, 52, 32-38 (1999)
[54] Cheng J. Y., Ross C. A., Smith H. I., Thomas E. L.“Templated Self-Assembly of Block Copolymers: Top-Down Helps Bottom-Up”, Adv. Mater., 18, 2505-2521 (2006)
[55] Ting X., Craig J. H., Thomas P. R. “Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films”, Macromolecules, 38, 2802-2805 (2005)
[56] Ham I. W., “Ordering in Thin Films of Block Copolymers: Fundamentals to Potential Applications”, Polym. Sci., 34, 1161-1210 (2009)
[57] Knoll A., Horvat A., Lyakhova K. S., Krausch G., Sevink G. J. A., Zvelindovsky A.V., Magerle R. “Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers”, Phys. Rev. Lett., 89, 035501-1 -035501-4 (2002)
[58] Horvat A., Lyakhova K. S., Sevink G. J. A., Zvelindovsky A. V. “Phase behavior in thin films of cylinder-forming ABA block copolymers: Mesoscale modeling”, J. Chem. Phys., 120, 1117-1126 (2004)
[59] Tsarkova L., Knoll A., Krausch G., Magerle R. “Substrate-Induced Phase Transitions in Thin Films of Cylinder-Forming Diblock Copolymer Melts”, Macromolecules, 39, 3608-3615 (2006)
[60] Sivaniah E., Hayashi Y., Matsubara S., Kiyono S., and Hashimoto T.“Symmetric Diblock Copolymer Thin Films on Rough Substrates. Kinetics and Structure Formation in Pure Block Copolymer Thin Films”, Macromolecules, 38, 1837-1849 (2005)
[61] 陳哲雄,林俊勳,林紋瑞,吳靖宙 “原子力顯微鏡(Atomic Force Microscopy)成像原理與中文簡易操作手冊” (2005)
[62] Kovalev A., Shulha H., Lemieux M., Myshkin N., Tsukruk V.V. “Nanomechanical probing of layered nanoscale polymer films with atomic force microscopy” , J. Mater. Res., 19, 716-728 (2004)
[63] Bowen D. K., Tanner B. K.,“High Resolution X-ray Diffractometry and Topography” (2002)
[64] Gibaud A., Hazra S.,“X-ray reflectivity and diffuse scattering”, Current Sci., 78, 1467-1477 (2000)
[65] Stephen B. R., Ashok K. K., Tobin J. M.“Self-Assembled Chromophoric NLO-Active Monolayers. X-ray Reflectivity and Second-Harmonic Generation as Complementary Probes of Building Block-Film Microstructure Relationships” , Langmuir, 12, 4218-4223(1996)
[66] Sheller N. B., Petrash S., Foster M. D.“Atomic Force Microscopy and X-ray Reflectivity Studies of Albumin Adsorbed onto Self-Assembled Monolayers of Hexadecyltrichlorosilane”, Langmuir, 14, 4535-4544 (1998)
[67] Hans J. W.“Characterization of solid catalysts” (2010)
[68] Kikuma J., Tonner B.P “XANES spectra of a variety of widely used organic polymers at the C K-edge”, Electron Spectroscopy and Related Phenomena, 82, 53-60 (1996)
[69] Ade H. , Hitchcock A. P.“NEXAFS microscopy and resonant scattering:Composition and orientation probed in real and reciprocal space”, Polymer, 49, 643-75 (2008)
[70] Dannenberger O., Weiss K., Himmel H. J., Jiger B., Buck M., “An orientation analysis of differently endgroup-functionalised alkanethiols adsorbed on Au substrates”, Thin Solid Films, 307 ,183-191 (1997)
[71] Müller B. P. “A Basic Introduction to Grazing Incidence Small-Angle X-Ray Scattering”, Lect. Notes Phys., 776, 61-89 (2009)
[72] Reiter G., Auroy P., Auvray L. “Instabilities of Thin Polymer Films on Layers of Chemically Identical Grafted Molecules”, Macromolecules, 29, 2150-2157 (1996)
[73] Zhang X., Lee F. K., Tsui O. K. C. “Wettability of End-Grafted Polymer Brush by Chemically Identical Polymer Films”, Macromolecules, 41, 8148-8151 (2008)
[74] Kim B., Ryu D. Y. “Dewetting of PMMA on PS-Brush Substrates”, Macromolecules, 42, 7919-7923 (2009)
[75] Vandenbrouck F., Valignat M. P., Cazabat A. M. “Thin Nematic Films: Metastability And Spinodal Dewetting”, Phys. Rev. Lett., 82, 2693-2696 (1999)
[76] Henn G., Bucknall D. G., Stamm M., Vanhoorne P.,rome R. J. “Chain End Effects and Dewetting in Thin Polymer Films”, Macromolecules, 29, 4305-4313 (1996)
[77] Suh H. S., Kang H.,§Nealey P. F., Char K.“Thickness Dependence of Neutral Parameter Windows for Perpendicularly Oriented Block Copolymer Thin Films” , Macromolecules, 43, 4744-4751 (2010)
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2011-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明