博碩士論文 983204050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.144.102.239
姓名 張境夫(Ching-Fu Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究
(Using Gold catalysts in nitrobenzene hydrogenation and nitrostyrene selective hydrogenation)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應
★ 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究★ 甲醇蒸汽重組產氫觸媒之設計
★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究
★ CuB超細合金觸媒之製備與催化性質探討★ 負載式CoB非晶態合金觸媒製備與催化性質探討
★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究
★ 負載式CuB合金觸媒製備與催化性質探討★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究
★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究★ 高分子穩定化奈米NiB觸媒之製備與催化性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以傳統預先調整pH值的沉積沉澱法製備Au/FeOOH、Au/CeO2、Au/TiO2及Au/γ-Al2O3觸媒,另以經修飾的沉積沉澱法,在不預先調整金溶液pH值下製備Au/Mg2AlO觸媒,探討金觸媒於硝基苯及硝基苯乙烯選擇性氫化反應,並以XRD、TEM、XPS、CO2-TPD分析觸媒。
金觸媒於環己烷溶劑中能有效地將硝基苯氫化為苯胺,其中以Au/FeOOH及Au/γ-Al2O3觸媒有極佳活性,Au/Mg2AlO觸媒為最差,與Au/Mg2AlO觸媒於α,β-不飽和醛選擇性氫化反應有最佳活性迥然不同。
金觸媒之Au3+/Au0比值和金顆粒大小與硝基苯氫化活性的關係並不顯著,擔體弱鹼性基的多寡為影響觸媒活性的主要因素。γ-Al2O3擔體擁有最多的弱鹼性基數量,活性最好;Mg2AlO擔體有最少的弱鹼性基數量,但有最多的強鹼性OH基。擔體的弱鹼基可協助H2的不均化解離(Hδ+ & Hδ-),有利於氫化反應的進行,強鹼性基則不利於氫化反應。
金觸媒於環己烷溶劑中能有效地選擇氫化硝基苯乙烯的硝基為乙烯苯胺。Au/FeOOH及Au/CeO2觸媒活性最佳,Au/Mg2AlO觸媒則最差,活性排序大小除Au/γ-Al2O3外,相似於硝基苯氫化反應。擔體的弱鹼性基亦為影響硝基苯乙烯選擇性氫化之重要因素。硝基苯乙烯的C=C鍵對γ-Al2O3有較強作用力,影響硝基於Au/γ-Al2O3之吸附與活化。
硝基苯氫化反應,Au/Mg2AlO、Au/FeOOH、Au/TiO2及Au/γ-Al2O3觸媒於非極性溶劑有較佳的活性及選擇率;於極性溶劑中觸媒活性較差,且有偶氮產物的生成。Au/CeO2不同於其他金觸媒,於極性溶劑有較佳活性。硝基苯乙烯選擇性氫化反應,非極性溶劑干擾硝基苯乙烯吸附的方向性,使金觸媒於非極性溶劑反不及極性溶劑。
摘要(英) This research, Au/FeOOH, Au/CeO2,Au/TiO2 and Au/Al2O3 catalysts was prepared by using conventional deposition precipitation method with pre-adjusting the pH value of the initial solution, and gold was dispersed on a solid base of Mg2AlO hydrotalcite using a modified deposition precipitation method. To confer gold catalysts in nitrobenzene hydrogenation and in nitrostyrene selective hydrogenation,and the catalysts were characterized by XRD,TEM,XPS and CO2-TPD.
Gold catalysts can hydrogenate nitrobenzene to aniline in CXN solvent effectively. Among them, Au/FeOOH and Au/Al2O3 have found the best activity. Au/Mg2AlO have found the worst, the results were different from selective unsaturated aldehydes hydrogenation.
The activity of nitrobenzene hydrogenation was not depend on the ratio of Au3+/Au0 and particle size, the amount of lewis base sites were the main factor to affect the catalyst activity. Al2O3 support has found the most weak lewis base sites , so the best activity it was. Mg2AlO support has found the least weak lewis base sites, but the most strong base OH group. The weak lewis base site can help hydrogen dissociation to yield (Hδ+ & Hδ-),it was good for hydrogenation, but strong base sites wasn’t.
Gold catalysts can hydrogenate nitrostyrene to vinylaniline effectivitly in CXN solvent. Au/FeOOH and Au/CeO2 have found the best activity, Au/Mg2AlO also the worst, the activity rank, except for Au/Al2O3, was mostly like nitrobenzene hydrogenation. The weak lewis base sites of the support were also the main factor of affecting nitrostyrene selective hydrogenation. The C=C double bond of nitrostyrene has the interfact with Al2O3, and affect the activation and absorption of nitro group.
Nitrobenzene hydrogenation, Au/Mg2AlO,Au/FeOOH,Au/TiO2 and Au/Al2O3 have found the better activity and selectivity in apolar solvent; The side product can be found in polar solvent, and the activity is lower. Au/CeO2 wasn’t like the other gold catalysts, it had the better activity in polar solvent. Nitrostyrene selective hydrogenation, the apolar solvent affected the direction of absorption, so the gold catalyst had the better activity in polar solvent.
關鍵字(中) ★ 金觸媒
★ 路易士弱鹼性基
★ 硝基苯乙烯
★ 硝基苯
關鍵字(英) ★ gold catalysts
★ nitrostyrene
★ lewis base sites
論文目次 摘要 i
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
第二章 文獻回顧 3
2-1 金觸媒的發展史 3
2-2 金觸媒的製備方式 6
2-2-1 含浸法(Impregnation) 6
2-2-2 共沉澱法(Coprecipitation) 7
2-2-3 沉積沉澱法(Deposition-precipitation) 7
2-2-4 其他方法 10
2-3 金觸媒於不同擔體表面之活性狀態 12
2-3-1 Au/Mg2AlO觸媒 12
2-3-2 Au/CeO2觸媒 16
2-3-3 Au/TiO2觸媒 18
2-3-4 Au/γ-Al2O3觸媒 20
2-3-5 Au/FeOOH觸媒 22
2-4 硝基苯及取代基硝基苯選擇性氫化反應 27
第三章 實驗方法與設備 33
3-1 Mg2AlO-hydrotalcite擔體之製備 33
3-2 觸媒製備程序 33
3-2-1 2 wt% Au/Mg2AlO-hydrotalcite觸媒之製備 33
3-2-2 2 wt% Au/support觸媒之製備 35
3-3 擔體與觸媒性質鑑定 36
3-3-1 X-射線繞射分析(XRD) 36
3-3-2 X-射線光電子光譜(XPS) 36
3-3-3 穿透式電子顯微鏡(TEM) 37
3-3-4 二氧化碳-程溫脫附(CO2-TPD) 38
3-4 反應活性測試 40
3-5 實驗藥品及氣體 43
第四章 結果與討論 45
4-1 2%Au/support觸媒於硝基苯之氫化反應 45
4-1(a) Au/Mg2AlO觸媒於硝基苯氫化 46
4-1(b) Au/CeO2觸媒於硝基苯氫化 52
4-1(c) Au/γ-Al2O3觸媒於硝基苯之氫化 56
4-1(d) Au/FeOOH觸媒於硝基苯之氫化 60
4-1(e) Au/TiO2觸媒於硝基苯氫化 64
4-2 擔體酸鹼度 69
4-3 硝基苯乙烯選擇性氫化反應 73
4-4 溶劑效應 78
4-4-1 金觸媒於硝基苯氫化之溶劑影響 78
4-4-2 金觸媒於硝基苯乙烯氫化之溶劑影響 80
第五章 結論 82
總 結 83
參考文獻 84
參考文獻 [1] M. Haruta, N. Yamada, T. Kobayashi, S. lijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal. 115 (1989) 301-309.
[2] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4, J. Catal. 144 (1993) 175-192.
[3] M. Haruta, When gold is not noble: catalysis by nanoparticles, The Chemical Record 3 (2003) 75-87.
[4] A. Schulz, M. Hargittai, Structural variations and bonding in gold halides: a quantum chemical study of monomeric and dimeric gold monohalide and gold trihalide molecules, AuX, Au2X2, AuX3, and Au2X6 (X=F, Cl, Br, I), Chem. Eur. J. 7 (17) (2001) 3657-3670.
[5] M. Haruta, Catalysis of gold nanoparticles deposited on metal oxides, CATTECH 6 (3) (2002) 102-115.
[6] C.T. Chang, B.J. Liaw, C.T. Huang, Y.Z. Chen, Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation, Appl. Catal. A: Gen. 332 (2007) 216-224.
[7]
游焜竣, Au/MgxAlO-hydrotalcite 觸媒於α,β-不飽和醛選擇性氫化反應之研究, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2008).
[8]
吳佩珊, Au觸媒於α,β-不飽和醛選擇性氫化反應之擔體效應研究, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2009).
[9] A.G. Sault, R.J. Madix, C.T. Campbell, Adsorption of oxygen and hydrogen on Au(110)-(1 × 2), Surf. Sci. 169 (1986) 347-356.
[10] Ph. Buffet, J.P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 13 (1976) 2287-2298.
[11] G.C. Bond, P.A. Sermon, Gold catalysts for olefin hydrogenateon, Gold Bull. 6 (1976) 102-105.
[12] W.C. Li, M. Comotti, F. Schüth, Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition–precipitation or impregnation, J. Catal. 237 (2006) 190-196.
[13] H.Y. Tsai, Y.D. Lin, W.T. Fu, S.D. Lin, The activation of supported Au catalysts prepared by impregnation, Gold Bull. 40 (2007) 184-191.
[14] F. Moreau, G.C. Bond, A.O. Taylor, Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents, J. Catal. 231 (2005) 105-114.
[15] S. Ivanova, V. Pitchon, A new preparation method for the formation of gold nanoparticles on an oxide support, Appl. Catal. A: Gen. 267 (2004) 191-201.
[16] V. Ponec, G.C. Bond, Catalysis by metals and alloys, Elsevier, Amsterdam, 1996.
[17] M. Haruta, Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications, Gold Bull. 37 (2004) 27-36.
[18] F. Cavani, F. Trifiro, A. Vacari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today 11 (1911) 173-301.
[19] D. Tichit , M.H. Lhouty, A. Guida, B.H. Chiche, F. Figueras, A. Auroux, D. Bartalini, E. Farronn, Textural properties and catalytic activity of hydrotalcite, J. Catal. 151 (1995) 50-59.
[20] W.T. Reichle, Catalytic reactions by thermally activated anionic clay minerals, J. Catal. 94 (1985) 547-577.
[21] A.L. McKenzie , C.T. Fishel, T.J. Davis, Investigation of the surface structure and basic properties of calcined hydrotalcite, J. Catal. 138 (1992) 547-561.
[22] A. Corma, V. Fornes, F. Rey, Hydrotalcite as base catalyst: influence of the chemical composition and synthesis condition on the dehydrogenation of isopropanol, J. Catal. 148 (1994) 205-212.
[23] A. Corma, V. Fornes, R.M. Martin-Aranda, F. Rey, Determination of base properties of hydrotalcite: condensation of benzaldehyde with ethyl acetoacetate, J. Catal. 134 (1992) 58-65.
[24]
[25]
廖志偉, 一步合成甲基異丁基酮之多功能觸媒研究-Pd(Ni)/ hydrotalcite, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (1996).
W. Yang, Y. Kim, P.K.T. Liu, M. Sahimi, T.T. Tsotsis, A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide, Chem. Eng. Sci. 57 (2002) 2945-2953.
[26] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Krönert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paal, R. Schlögl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism, J. Catal. 237 (2006) 17-28.
[27] Y. Huang, A. Wang, L. Li, X. Wang, D. Su, T. Zhang, Ir-in-ceria : A highly selective catalyst for preferential CO oxidation, J. Catal. 255 (2008) 144-152.
[28] J. Zhang, Y. Jin, C. Li, Y. Shen, L. Han, Z. Hu, X. Di, Z. Liu, Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation, Appl. Catal. B: Environ. 91 (2009) 11-20.
[29] J. Meilin, B. Haifeng, Zhaorigetu, S. Yuenain, L. Yanfeng, Preparation of Au/CeO2 catalyst and its catalytic performance for HCHO oxidation, J. Rare Earths 26 (2008) 528-531.
[30] R. Pillai, S. Deevi, Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide, Appl. Catal. A: Gen. 299 (2006) 266-273.
[31] M.P. Casaletto, A. Longo, A.M. Venezia, A. Martorana, A. Prestianni, Metal-support and preparation influence on the structural and electronic properties of gold catalysts, Appl. Catal. A: Gen. 302 (2006) 309-316.
[32] P. Sangeetha, Y.W. Chen, Preferential oxidation of CO in H2 stream on Au/CeO2-TiO2 catalysts, Int. J. hydrogen energy 34 (2009) 7342-7347.
[33] P. Lakshmanan, L. Delannoy, V. Richard, C.M. thivier, C. Potvin, C. Louis, Total oxidation of propene over Au/CeO2-Al2O3 catalysts: Influence of the CeO2 loading and the activation treatment, Appl. Catal. B: Environ. 96 (2010) 117-125.
[34] 維基百科, http://zh.wikipedia.org/zh-tw/TiO2 (2010).
[35] M.A. Vannice, B. Sen, Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum, J. Catal. 115 (1989) 65-78.
[36] B. Campo, M. Volpe, S. Ivanova, R. Touroude, Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts, J. Catal. 242 (2006) 162-171.
[37] R. Zanella, C. Louis, S. Giorgio, R. Touroude, Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism, J. Catal. 223 (2004) 328-339.
[38] J. Guzman, S. Kuba, J.C. Fierro-Gonzalez, B.C. Gates, Formation of gold clusters on TiO2 from adsorbed Au(CH3)2(C5H7O2): characterization by X-ray absorption spectroscopy, Catal. Lett. 95 (2004) 77-86.
[39] J.D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli, A. Baiker, Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation, J. Catal. 186 (1999) 458-469.
[40] M. Haruta, M. Daté, Advances in the catalysis of Au nanoparticles, Appl. Catal. A: Gen. 222 (2001) 427-437.
[41] E.D. Park, J.S. Lee, Effect of pretreatment conditions on CO oxidation over supported Au catalysts, J. Catal. 186 (1999) 1-11.
[42] A. Wolf, F. Schuth, A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Appl. Catal. A: Gen. 226 (2002) 1-13.
[43] D. Boyd, S. Golunski, G.R. Hearne, T. Magadzu, K. Mallick, M.C. Raphulu, A. Venugopal, M.S. Scurrell, Reductive routes to stabilized nanogold and relation to catalysis by supported gold, Appl. Catal. A: Gen. 292 (2005) 76-81.
[44] N. Dimitratos, A. Villa, C.L. Bianchi, L. Prati, M. Makkee, Gold on titania: Effect of preparation method in the liquid phase oxidation, Appl. Catal. A: Gen. 311 (2006) 185-192.
[45] 陳星佑, 巴豆醛於Au/Mg2AlO-hydrotalcite 觸媒之液相選擇性氫化反應研究, 國立中央大學, 化學工程與材料工程學系, 碩士論文 (2009).
[46] N. Weiher, E. Bus, L. Delannoy, C. Louis, D.E. Ramaker, J.T. Miller, J.A.V. Bokhoven, Structure and oxidation state of gold on different supports under various CO oxidation conditions, J. Catal. 240 (2006) 100-107.
[47] J. Garcıa-Serrano, A.G. Galindo, U. Pal, Au–Al2O3 nanocomposites: XPS and FTIR spectroscopic studies, Sol. Energy Mater. Sol. Cells 82 (2004) 291-298.
[48] M.A.P. Dekkers, M.J. Lippits, B.E. Nienwenhuys, Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions, Catal. Today 54 (1999) 381-390.
[49] H.H. Kung, M.C. Kung, C.K. Costello, Supported Au catalysts for low temperature CO oxidation, J. Catal. 216 (2003) 425-432.
[50] E.Gy. Szabó, A. Tompos, M. Hegedűs, Á. Szegedi, J.L. Margitfalvi, The influence of cooling atmosphere after reduction on the catalytic properties of Au/Al2O3 and Au/MgO catalysts in CO oxidation, Appl. Catal. A: Gen. 320 (2007) 114-121.
[51] 土壤無機固定相, 台灣大學.
[52] C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti, S. Galvagno, A comparative study on the selective hydrogenation of α,β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts, Catal. Today 122 (2007) 341-351.
[53] H.C. Brown, K. Sivasankaran, Hydrogenation of nitroaromatics in the presence of the new platinum metal and carbon supported platium metal catalyst, J. Am. Chem. Soc. Comm. to the Editor, 84, 2828 (1962)
[54] P.H. Emmett, H.C. Yao, Kinetic of liquid phase hydrogenation. IV, hydrogenation of nitrocompounds over Raney nickel and nickel poweder catalysts, J. Am. Chem. Soc. 84 (1962) 1086.
[55] H.D. Burge, D.J. Collins, Intermediates in the Raney nickel catalyzed hydrogenation of nitrobenzene to aniline, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 389.
[56] 蔡漢良, 硝基苯在P-1硼化鎳觸媒之氫化反應, 國立台灣大學, 化學工程學系, 碩士論文 (1984).
[57] P. Baumeister, H.U. Blaser, W. Scherrer, Stu. Surf, Chemoselective hydrogenation of aromatic chloronitro compounds with amidine modified nickel catalysts, Sci. Catal. 59 (1991) 321-360.
[58] P. Baumeister, H.U. Blaser, U. Siegrist, M. Studer, Strong reduction of hydroxylamine accumulation in the catalytic hydrogenation of nitroarenes by vanadium promoters, Chem. Ind. (Dekker) 75 (1998) 219-222.
[59] E. Auer, A. Freud, M. Gross, R. Hartung, P. Panster, Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes, Chem. Ind. (Dekker) 75 (1998) 225-231.
[60] A. Onopchenko, E.T. Sabourin, C.M. Selwitz, Novel substituted amino-aromatic acetylenes and their method of preparation, J. Org. Chem. 44 (1979) 1233-1237.
[61] A. Mori, T. Mizusaki, M. Kawase, T. Maegawa, Y. Monguchi, S. Takao, Y. Takagi, H. Sajiki, Adv. Synth, Novel palladium-on-carbon/diphenyl sulfide complex for chemoselective hydrogenation: preparation, characterization, and application, Catal. 350 (2008) 406-411.
[62] J.M. Hawkins, T.W. Makowski, Optimizing selective partial hydrogenations of 4-nitroacetophenone via parallel reaction screening, Org. Process Res. Dev. 5 (2001) 328-330.
[63] A. Corma, P. Serna, Chemoselective hydrogenation of nitro compounds with supported gold catalysts, Science 313 (2006) 332-334.
[64] A. Corma, P. Conception, P. Serna, A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts, Angew. Chem. 119 (2007) 7404-7408.
[65] F. Haber, Z. Elektrochem. 22 (1898) 506.
[66] A. Corma, M. Boronat, S. Gonzalez, F. Illas, A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support, Chem. Commun. 32 (2007) 16230-16237.
[67] P. Serna, P. Conception, A. Corma, Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics, J. Catal. 265 (2009) 8748-8753.
[68] K. Shimizu, Y. Miyamoto, T. Kawasaki, T. Tanji, Y. Tai, A. Satsuma, Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: mechanistic reasons of size-and support-dependent activity and selectivity, J. Phys. Chem. C 113 (2009) 17803-17810.
[69] A.N. Christensena, T.R. Jensenb, C.R.H. Bahlc, E. DiMasid, Nano size crystals of goethite,[alpha]-FeOOH: Synthesis and thermal transformation, J. Solid State Chem. 180 (2007) 1431-1435
[70] J. Erkelens, C. Kemball, A.K. Galway, Trans. Faraday Soc. 59 (1963) 1181-1191.
[71] R.P. Chambers, M. Boudart, J. Catal. 5 (1966) 517-528.
[72] N.S. Figoli, S.A. Hillar, J.M. Parera, Poisoing and nature of alumina surface in the dehydration of methanol, J. Catal. 20 (1971) 230-237.
[73] Y. Amenomiva, J. Catal. 22 (1971) 109-116.
指導教授 陳吟足(Yin-Zu Chen) 審核日期 2011-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明