博碩士論文 983204054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.137.187.250
姓名 周映潔(Ying-Chieh Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米金擔載於改質二氧化鈰應用於催化氫氣流中選擇性氧化一氧化碳反應
(Gold Nanoparticle Supported on Modified Cerium Oxide in Preferential Oxidation Reaction of CO in H2 stream)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究將金之奈米顆粒擔載於以銅或鎂改質之二氧化鈰上,並應用於富氫氣流中之一氧化碳選擇性氧化反應。氧化銅-二氧化鈰擔體是以共沉澱法製備;另一方面,鎂則是以含浸法方式與商用二氧化鈰(Nikki)擔體混合。最後,再使用沉積沉澱法將金顆粒擔載於上述改質擔體中。在此研究中,改變不同的促進劑比例和擔體鍛燒溫度找出最佳的條件以製備出最適合PROX反應之金觸媒。製備完成的觸媒經過X光繞射分析儀、穿透式電子顯微鏡、高解析穿透式電子顯微鏡、X光電子能譜儀和氮氣吸附儀等鑑定分析其觸媒性質。PROX反應以固定床反應器填充0.1克觸媒,並以進料CO/O2/H2/He 體積比為1.33/1.33/65.33/32.01,總流量控制在50 ml/min下進行反應。結果顯示在特定的銅比例和擔體鍛燒溫度,Au/CuO-CeO2觸媒可在質子交換膜燃料電池(PEM fuel cells)的操作溫度(65℃-100℃)下將一氧化碳完全轉化。將金的承載量由1 wt. %降至0.5 wt. %亦可得到完全轉化的成果。金以約2-5奈米的大小分佈於擔體上。銅離子進入二氧化鈰晶格可提升二氧化鈰的儲/釋氧能力以促進觸媒活性。而升高擔體之鍛燒溫度可提高擔體之結晶性、增加二氧化鈰中氧空缺之數量,因此可提高觸媒活性。反應中一氧化碳之選擇性隨銅的添加量而提高。Au/Mg(OH)2-CeO2觸媒在較高的擔體鍛燒溫度下(550℃或700℃)才有比較明顯的促進作用。將兩種觸媒進行160小時的長時間活性測試,Au/CuO-CeO2觸媒在活性上有較佳的穩定性。
摘要(英) Nanoscaled gold particle supported on CeO2 and modified by CuO or Mg(OH)2 were used for preferential oxidation of carbon monoxide in hydrogen-rich stream (PROX). CuO-CeO2 support was prepared by co-precipitaion method, while magnesium was loaded on commercial CeO2 (Nikki) through impregnantion method. Finally, gold was added to these supports by deposition-precipitation method. Different amounts of promoter and different calcination temperatures of the support were changed to develop the best catalyst for PROX reaction. These catalysts were characterized by XRD, TEM, HR-TEM, XPS, and N2-sorption. The PROX reaction was carried out in a fixed bed continuous flow reactor with a feed of CO: O2: H2: He = 1.33: 1.33: 65.33: 32.01 in volume ratios. The results showed that the catalyst with specific Cu content and calcination temperature could reach 100% of CO conversion at the PEM fuel cells operating temperature (65℃-100℃) even as the gold content was reduced from 1 wt. % to 0.5 wt. %. The particle size of gold was around 2-5 nm and Au particles were dispersed well on the support. The incorporation of copper ion into ceria lattice promoted the oxygen storage capacity of ceria support and encouraged the activity of catalysts. The higher calcinations temperature for the support resulted higher crystallinity of CeO2, leading to the higher activity. The CO selectivity increased with increasing copper amount. The promotional effect of magnesium addition was more obvious at higher calcinations temperature (550℃ and 700℃) of support. After deposition-precipitation method, the magnesium presented as phase of Mg(OH)2 rather than MgO as observed by XRD. However, the existed of this hydroxide did not show significant promotion on catalytic activity. These two kinds of catalyst underwent long-term reaction test for 160 hours. The Au/CuO-CeO2 catalyst was more stable than Au/Mg(OH)2-CeO2.
關鍵字(中) ★ 氫氧化鎂
★ 氧化銅
★ 二氧化鈰
★ 金觸媒
★ 一氧化碳氧化
★ PROX
★ 燃料電池
關鍵字(英) ★ fuel cell
★ CO oxidation
★ gold
★ CeO2
★ CuO
★ Mg(OH)2
★ PROX
論文目次 摘要 I
Abstract II
Table of Content III
List of Figures V
List of Tables VIII
Chapter 1. Introduction 1
Chapter 2. Literature Review 3
2.1 PROX Catalysts 3
2.1 Application of Gold Catalyst 3
2.2.1. Chemical Synthesis 5
2.2.2. Pollution and Emission Control 6
2.2.3. Hydrogen economy/Fuel Cell System 7
2.2 Preparation of Gold Catalysts 8
2.3.1. Impregnation method 9
2.3.2. Co-precipitation Method 10
2.3.3. Deposition-precipitation Method 10
2.3.4. Photo-deposition Method 14
2.3 Gold Catalyst Apply on PROX Reaction 16
2.4.1 Active Site of Gold Catalyst 16
Chapter 3. Experimental 27
3.1 Catalysts Preparation 27
3.1.1 Preparation of Support by Impregnantion method 27
3.1.2 Preparation of Support by Co-precipitation method 27
3.1.3 Preparation of Gold Catalysts by Deposition-precipitation Method 27
3.2 Characterization 29
3.2.1 N2-sorption 29
3.2.2 TEM and HR-TEM 29
3.2.3 XRD 29
3.2.4 XPS 30
3.3 Activity Test 30
Chapter 4. Au/CuO-CeO2 Catalyst for Preferential Oxidation of CO in Hydrogen-rich Stream 32
4.1 Introduction 32
4.2 The Effect of Cu/(Cu+Ce) Ratio 32
4.2.1 TEM 32
4.2.2 HR-TEM 35
4.2.3 XRD 35
4.2.4 XPS 37
4.2.5 BET Surface Area 41
4.2.6 Reaction Test of Au/CuO-CeO2 with Different Cu Content in Selective CO Oxidation 42
4.3 The Effect of Calcined Temperature of Support 44
4.3.1 TEM 44
4.3.2 XRD 46
4.3.3 XPS 48
4.3.4 BET Surface Area 53
4.3.5 Reaction Test of Au/CuO-CeO2 with Different Calcination Temperature of Support in Selective CO Oxidation 53
4.4 Conclusion 59
Chapter 5. Au/Mg(OH)2-CeO2 Catalyst for Preferential Oxidation of CO in Hydrogen-rich Stream 60
5.1 Introduction 60
5.2 The Effect of Mg/(Mg+Ce) Ratio 61
5.2.1 TEM 61
5.2.2 HR-TEM 62
5.2.3 XRD 63
5.2.4 XPS 65
5.2.5 BET Surface Area 70
5.2.6 Reaction Test of Au/Mg(OH)2-CeO2 with Different Mg Content in Selective CO Oxidation 70
5.3 The Effect of Calcined Temperature of Support 72
5.3.1 TEM 72
5.3.2 XRD 73
5.3.3 XPS 75
5.3.4 BET Surface Area 80
5.3.5 Reaction Test of Au/Mg(OH)2-CeO2 with Different Calcination Temperature of Support in Selective CO Oxidation 80
5.3.6 Long-term Test 82
5.4 Conclusion 83
Chapter 6. Summary 85
Reference 86
參考文獻 1. Görke, O., Pfeifer, P., “Preferential CO Oxidation over a Platinum Ceria Alumina Catalyst in a Microchannel Reactor” Int. J. Hydrogen Energy (2011), doi:10.1016/j.ijhydene.2011.01.069
2. Haruta, M., “Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation” J. New Mater. Electrochem. Syst. 7 (2004) 163-172.
3. “Gold Catalyst for Removal of Nitrogen Oxide and Method for Removing Nitrogen Oxide” Japanese Patent Application JP 4281846, AIST (1992).
4. Min, B. K., Friend, C. M., Chem. Rev. 107 (2007) 2709.
5. Thompson, D. T., “Progress Towards The Commercial Application of Gold Catalysts” Top. Catal. 44 (2007) 331-342.
6. Chen, M., Goodman, D. W., “Promotional Effects of Au in Pd-Au Catalysts for Vinyl Acetate Synthesis“ Chin. J. Catal. 2008 (29) 1178–1186.
7. Kumar, D., Chen, M.S., Goodman, D.W. “Synthesis of vinyl acetate on Pd-based catalysts” Catal. Today 123 (2007) 77–85.
8. Macleod, N., Keel, J. M., Lambert, R. M., “The Effects of Ageing a Bimetallic Catalyst under Industrial Conditions: a Study of Fresh and Used Pd-Au-K/silica Vinyl Acetate Synthesis Catalysts” Appl. Catal., A 261 (2004) 37–46.
9. Rotgerink, H. L., Proc. GOLD 2006, Limerick, Ireland, Sept. 2006.
10. Chan, S. C., Barteau, M. A., “Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition” Langmuir 21 (2005) 5588-5595.
11. Date, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M., “Performance of Au/TiO2 Catalyst under Ambient Conditions” Catal. Today 72 (2002) 89-94.
12. Pattrick,G., E. van der Lingen, C.W. Corti, R.J. Holliday and D.T. Thompson, “The Potential for Use of Gold in Automotive Pollution Control Technologies: A Short Review” Top. Catal. 273 (2004) 30–31.
13. Andreeva, D., ”Low Temperature Water Gas Shift Reaction over Gold Catalysts“ Gold Bull. 35 (2002) 82-88.
14. Haruta, M., “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Application”, Gold Bull. 37 (2004) 27.
15. Moreau, F., Bond, G. C., Taylor, A. O., “Gold on Titania Catalysts for the Oxidation of Carbon Monoxide: Control pH During Preparation with Various Gold Content”, J. Catal. 231 (2005) 105.
16. Haruta, M., “Size- and Support-Dependency in the Catalysis of Gold” Catal. Today 36 (1997) 153
17. Haruta, M., “Catalysis of Gold Nanoparticles Deposited on Metal Oxides”, Cattech 6 (2002) 102.
18. Zanella, R., Delannoy, L., Louis, C., “Mechanism of Deposition of Gold Precursors onto TiO2 during the Preparation by Cation Adsorption and Deposition–Precipitation with NaOH and Urea”, Appl. Catal. A: Gen. 291 (2005) 62.
19. Wolf, A., Schuth, F., “A Systematic Study of the Synthesis Conditions for the Preparation of Highly Active Gold Catalysts”, Appl. Catal. A: Gen. 226 (2002) 1.
20. Chan, S. C., Barteau, M. A., “Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition” Langmuir 21 (2005) 5588-5595.
21. Yang, Y. F., Sangeetha,P. , Chen, Y. W., “Au/TiO2 Catalysts Prepared by Photo-Deposition Method for Selective CO Oxidation in H2 Stream” Int. J. Hydrogen Energy 34 (2009 ) 8912–8920.
22. Quinet, E., Piccolo, L., Morfin F., Avenier, P., Diehl, F., Caps, V., Rousset, J. L., “On the Mechanism of Hydrogen-Promoted Gold-Catalyzed CO Oxidation” J. Catal. 268 (2009) 384-389
23. Bera, P., Hegde, M. S., Catal.Lett. 79 (2002) 75.
24. Liu, W., Flytzani-Stephanonpoulos, M., J. Catal., 153 (1995) 317.
25. Scire, S.,Minico, S., Crisafulli, C., Satriano, C., Pistone, A., Appl. Catal. B. 77 (2001) 87.
26. Chen, M., Goodman, D. W., “The Structure of Catalytically Active Au on Titania” Science 306 (2004) 252-255.
27. Casaletto, M. P., Longo, A., Martorana, A., Prestianni, A., Venezia, A. M., “XPS Study of Supported Gold Catalysts: the Role of Au0 and Au+ Species as Active Sites”, Surf. Interface Anal. 38 (2006) 215.
28. Fu, Q., Weber, A., M. Flytzani-Stephanopoulos, "Nanostructured Au-CeO2 Catalysts for Low-Temperature Water-Gas Shift Reaction," Catal. Letters 77 (2001) 87-95.
29. Dekkers, M. A. P., Lippits, M. J., and Nieuwenhuys, B. E., Catal. Lett. 56 (1998) 195.
30. Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Ichikawa, S., Haruta, M., “Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation” J. Catal. 202 (2001) 256–267.
31. Grisel, R. J. H., Westrstrate, C. J., Goossens, A., Craje, M. W. J., Van der Kraan, A. M., and Nieuwenhuys, B. E., “Oxodation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catal. Today 72 (2002) 123-132.
32. Grisel, R. J. H., Westrstrate, C. J., Goossens, A., Craje, M. W. J., Van der Kraan, A. M., and Nieuwenhuys, B. E., “Oxodation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catal. Today 72 (2002) 123-132.
33. Mavrikakis, M., Stoltze, P., Norskov, J. K., “Making Gold Less Noble”, Catal. Lett. 64 (2000) 101
34. Haruta, M., “When Gold Is Not Noble: Catalysis by Nanoparticles” Chem. Record., 3 (2003) 75
35. Lopez, N., Janssens, T. V. W., Clausen, B. S., Xu, Y., Mavrikakis, M., Bligaard, T., Nørskov, J. K., “On the Origin of the Catalytic Activity of Gold Nanoparticles for Low-Temperature CO Oxidation” J. Catal. 223 (2004) 232-235.
36. Schubert, M. M., Hackenberg, S., van Veen, A. C., Muhler, M., Plzak, V., Behm, R. J., “CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction” J. Catal. 197 (2001) 113-122.
37. Bondzie, V. A., Parker, S. C., Campbell, C. T., J. Vac. Sci. Technol. A 17 (1999) 1717
38. Valden, M., Pak, S., Lai, X., and Goodman, D. W., Catal. Lett. 56, 7 (1998).
39. Grunwaldt, J.-D., and Baiker, A., J. Phys. Chem. 103 (1999) 1002.
40. Bollinger, M. A., and Vannice, M. A., Appl. Catal. B 8, 417 (1996).
41. Tripathi, A. K., Kamble, V. S., and Gupta, N. M., J. Catal. 187 (1999) 332.
42. Barton, D. G., Podkolzin, S. G., “Kinetic Study of a Direct Water Synthesis over Silica-Supported Gold Nanoparticles” J. Phys. Chem. B 109 (2005) 2262.
43. Barton, D. G., Podkolzin, S. G., “Kinetic Study of a Direct Water Synthesis over Silica-Supported Gold Nanoparticles” J. Phys. Chem. B 109 (2005) 2262.’
44. Kolli, T., Kanerva, T., Lappalainen, P., Huuhtanen, M., Vippola, M., Kinnunen, T., Kallinen, K., Lepistö, T., Lahtinen J., Keiski, R. L., “The Effect of SO2 and H2O on the Activity of Pd/CeO2 and Pd/Zr–CeO2 Diesel Oxidation Catalysts”
V
45. Valden, M., Lai, X., Goodman, D. W., “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties” Science 281 (1998) 1647-1650.
46. Bamwenda, G. R., Tsubota, S., Nakamura, T., Haruta, M., Catal. Lett. 44 (1997) 83.
47. Zanella, R., Tsubota, S., Kobayashi, T., Kaeyama, H., Genet, M. J., Delmon, B., J. Catal., 144 (1993) 175.
48. C. Rossignol, S. Arrii, F. Morfin, L. Piccolo, V. Caps and J. Rousset, J. Catal. 230 (2005), p. 476.
49. Grisel, R. J. H., Nieuwenhuys, B. E., “A Comparative Study of the Oxidation of CO and CH4 over Au/MOx/Al2O3 Catalysts” Catal. Today 64 (2001) 69.
50. M.J. Lippits, A.C. Gluhoi and B.E. Nieuwenhuys, Top. Catal. 44 (2007), p. 159.
51. Sangeetha, P., Chen, Y. W., “Preferential Oxidation of CO in H2 Stream on Au/CeO2-TiO2 Catalysts” Int. J. Hydrogen Energy 34 (2009) 7342-7347.
52. Okumura, M., Tsubota, S., Haruta, M., “Preparation of Supported Gold Catalysts by Gas-Phase Grafting of Gold Acethylacetonate for Low-Temperature Oxidation of CO and of H2” J. Mol. Catal. A: Chem. 199 (2003) 73-84.
53. Yan, W.F., Mahurin, S.M., Pan, Z.W., Overbury,S.H., Dai, S., J. Am. Chem. Soc. 127 (2005) 10480.
54. Ma, Z., Overbury, S. H., Dai, S., “Au/MxOy/TiO2 Catalysts for CO Oxidation: Promotional Effect of Main-Group, Transition, and Rare-Earth Metal Oxide Additives” J. Mol. Catal. A: Chem. 273 (2007) 186–197
55. Richardson, J.T., “Principles of Catalyst Development.” Plenum Press, New York, 1992.
56. Liu, H., Kozlov, A. I., Kozlova, A. P., Shido, T., Asakura, K., and Iwasawa, Y., J. Catal. “Active Oxygen Species and Mechanism for Low-Temperature CO Oxidation Reaction on a TiO2-Supported Au Catalyst Prepared from Au(PPh3)(NO3) and As-Precipitated Titanium Hydroxide” 185 (1999) 252.
57. Haruta, M., Tsubota, S., Kobayashi, T., Kageyama,H., Genet, M. J., Delmon, B., “Low-Temperature Oxidation of CO over Gold Supported on TiO2, a-Fe2O3, and Co3O4” J. Catal. 144 (1993) 175–192.
58. Haruta, M., Yamada, N., Kobayashi, T., Iijima, S,, “Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide” J Catal 115 (1989) 301–309.
59. Liotta, L.F., Carlo, G. Di, Pantaleo, G., Venezia, A.M., “Supported Gold Catalysts for CO Oxidation and Preferential Oxidation of CO in H2 Stream: Support Effect” Catal. Today 158 (2010) 56–62.
60. Ilieva, L., Pantaleo, G., Ivanov, I., Maximova, A., Zanella, R., Kaszkur, Z., Venezia, A. M., Andreeva, D., “Preferential Oxidation of CO in H2 Rich Stream (PROX) over Gold Catalysts Supported on Doped Ceria: Effect of Preparation Method and Nature of Dopant” Catal. Today 158 (2010) 44-55.
61. Ilieva, L, Pantaleo, Ivanov, I., Zanella, R., Venezia, A. M., Andreeva, D., “A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO” Int. J. Hydrogen Energy 34 (2009) 6505–6515.
62. Mozer, T. S., Dziuba, D. A., Vieira, C. T. P., Passos, F. B., “The Effect of Copper on the Selective Carbon Monoxide Oxidation over Alumina Supported Gold Catalysts” J. Power Sources 187 (2009) 209-215.
63. Avgouropoulos, G., Manzoli, M., Boccuzzi, F., Tabakova, T., Papavasiliou, J., Ioannides, T., Idakiev, V., “Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction” J. Catal. 256 (2008) 237-247.
64. Holgado, J. P., Munuera, G., “XPS/TPR Study of the Reducibility of M/CeO2 Catalysts (M=Pt, Rh): Does Junction Effect Theory Apply” Elsevier Science, Brussels, Belgium, 1995.
65. Meunier, F. C., Yablonsky, G., Reid, D., Shekhtma, S.O., Hardacre, C., Burch, R., Lazman, M. “Negative Apparent Kinetic Order in Steady-State Kinetics of the Water-Gas Shift Reaction over a Pt–CeO2 Catalyst” Catal. Today 138 (2008) 216-221.
66. Bunluesin, T., Gorte, R. J., Graham, G. W., “Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties” Appl. Catal. B 15 (1998) 107-114.
67. Kolli, T., Kanerva, T., Lappalainen, P., Huuhtanen, M., Vippola, M., Kinnunen, T., Kallinen, K., Lepistö, T., Lahtinen J., Keiski, R. L., “The Effect of SO2 and H2O on the Activity of Pd/CeO2 and Pd/Zr–CeO2 Diesel Oxidation Catalysts”
68. Letichevsky, S., Tellez, C. A., Avillez R. R., Silva, M. I. P., Fraga, M. A., Appel, L. G., “Obtaining CeO2–ZrO2 mixed oxides by coprecipitation: role of preparation conditions” Appl. Catal. B 58 (2005) 203-210.
69. Deraz, N. M., “Characterization and Catalytic Performance of Pure and Li2O-doped CuO/CeO2 Catalysts” Appl. Surf. Sci. 255 (2009) 3884-3890.
70. Shan, W., Shen, W., Li, C., “Structural Characteristics and Redox Behaviors of Ce1-xCuxOy Solid Solutions” Chem. Mater. 15 (2003) 4761-4767.
71. Yuan, Y., Asakura, K., Kozlova, A. P., Wan, H., Tsai, K., Iwasawa, Y., “Supported Gold Catalysis Derived from the Interaction of a Au–Phosphine Complex with As-Precipitated Titanium Hydroxide and Titanium Oxide” 44 (1998) 333-342.
72. Venezia, A. M., Pantaleo, G., Longo, A., Carlo, G. D., Casaletto, M. P., Liotta, F. L., Deganello, G., “Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts” J. Phys. Chem. B 109 (2005) 2821-2827.
73. Pestryakov, A. N., Lunin, V. V., Kharlanov, A. N., Kochubey, D. I., Bogdanchikova, A. Y., Stakheev, “” J. Mol. Struct. 642 (2002) 129.
74. Tseng, I. H., Wu, J. C. S., Chou, H.Y. “Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction” J. Catal. 221 (2004) 432-440.
75. Sedmak, G., Hocevar, S., Levec, J., “Transient Kinectic Model of CO Oxidation over a Nanostructured Cu0.1Ce0.9O2-y Catalyst” J. Catal. 222 (2004) 87-99.
76. Moreno, M., Bergamini, L., Baronett, G. T., Laborde, M. A., Marino, F. J., “Mechanism of CO oxidation over CuO/CeO2 catalysts” Int. J. Hydrogen Energy 35 (2010) 5918-5924.
77. Avgouropoulos, G., Ioannides,T., Matralis, H., “Influence of the Preparation Method on the Performance of CuO-CeO2 Catalysts for the Selectivie Oxidation of CO” Appl. Catal. B 56 (2005) 87-93.
78. Deraz, N. M., “Characterization and Catalytic Performance of Pure and Li2O-doped CuO/CeO2 Catalysts” Appl. Surf. Sci. 255 (2009) 3884-3890.
79. Gamarra, D., Martinez Arias, A., “Preferential Oxidation of CO in rich H2 over CuO/CeO2: Operand-DRIFTS Analysis of Deactivating Effect of CO2 and H2O” J. Catal. 263 (2009) 189.
80. Yan, K., Yanhua, Z., Xiaoshu, W., Jun, W., Haiqin, W., Lin, D., Qijie, Y., “Catalytic Performance of Cu-MCM41 with High Copper for NO Reduction by CO.” Stud. Surf. Sci. Catal. 165 (2007) 749.
81. Chen, J. C., Chen, W. C., Tien, Y. C., Shih, C. J., “Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process” J. Alloys Compd. 496 (2010) 364-369.
82. Xiaoyuan, J., Guanglie, L., Renxian, Jianxin, M., Yu, C., Xiaoming, Z., “Studies of Pore Structure, Temperature-Programmed Reduction Performance, and Micro-Structure of CuO-CeO2 Catalysts” Appl. Surf. Sci. 173 (2001) 208-220.
83. Zhou, X. D., Huebner, W., and Anderson, H. U., “Room-Temperature Homogeneous Nucleation Synthesis and Thermal Stability of Nanometer Single Crystal CeO2”, Appl. Phys. Lett. 80 (2002) 3814-3816.
84. Quinet, E., Morfin, F., Diehl, F., Avenier, P., Caps, V., Rousset, J. L., Appl. Catal. B 80 (2008) 195.
85. Benson, S. W., Dobis, O., J. Phys. Chem. A 102 (1998) 5175.
86. Finch, R. M., Hodge, N. A., Hutchings, G. J., Meagher, A., Pankhurst, Q. A., Siddiqui, M. R. H., Wagner, F. E., Whyman, R., Phys. Chem. Chem. Phys. 1 (1999) 485.
87. Cunningham, D. A. H., Vogel, W., Haruta, M., “Negative Activation Energies in CO Oxidation over an Icosahedral Au/Mg(OH)2 Catalst” Catal. Lett. 63 (1999) 43-47.
88. Grisel, R. J. H., Nieuwenhuys, B. E., “Selective Oxidation of CO, over Supported Au Catalysts” J. Catal. 199 (2001) 48.
89. Guzman, J., Anderson, B. G., Vinod, C. P., Ramesh, K., Niemantsverdriet, J. W., Gates, B., Langmuir 21 (2005) 3675.
90. Schubert, M. M., Plzak, V., Garche J., Behm, R. J., “Activity, Selectivity and Long-term Stability of Different Metal Oxide Supported Gold Catalysts for the Preferential CO Oxidation in H2-Rich Gas” Catal. Lett. 76 (2001) 143.
91. Qian, K., Zhang, W., Sun, H., Fang, J., He, B., Ma, Y., Jiang, Z., Wei, S., Yang, J., Huang, W., “Hydroxyls-Induced Oxygen Activation on “Inert” Au Nanoparticles for Low-Temperature CO Oxidation” J. Catal. 277 (2011) 95-103.
92. Lee, H. C., Kim, D. H., “Kinetics of CO and H2 oxidation over CuO-CeO2 catalyst in H2 mixtures with CO2 and H2O” Catal. Today 132 (2008) 109-116.
93. Martinez-Arias, A., Hungria, A. B., Munuera, G., Gamarra, D., “Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream” 65 (2006) 207-216.
94. Schubert, M. M., Kahlich, M. J., Gasteiger, R. J., Behm, R. J., Power Source 84 (1999) 175.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2011-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明