博碩士論文 983204056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.16.81.138
姓名 楊詠翔(Yong-siang Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討溫度與種菌對豬糞與稻桿厭氧共消化產甲烷之影響
(Effect of temperature and inoculum on methane production in anaerobic co-digestion of swine manure and rice straw)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因為近幾年石油價格大幅攀升的原因,而讓生質能源又被重新被重視(如生質甲烷、生質氫氣、生質酒精、生質柴油等), 而且環保意識的高漲對農業廢棄物(如稻稈、花生殼、稻殼等)的回收再利用也日趨重視,所以是一個相當值得研究的課題。
本研究主要以豬糞和稻桿混和在厭氧的環境下消化產甲烷,主要以溫度 (40 ℃、55 ℃)和種菌 (改良式1號、改良式2號、改良式3號)為變因探討對產甲烷之影響,藉由上面兩個實驗找出厭氧發酵產甲烷的最佳操作條件,最後再利用最佳操作條件探討豬糞與稻桿三種揮發固含量(VS)比(3:1、1:1、1:3)的產氣效果。
實驗結果發現55 ℃的環境下添加改良式3號種菌的累積甲烷氣量可達到3328.49 54.51 mL,其產氣效果比其他操作條件好。在不同的揮發固含量比實驗中,以比例3:1的產氣效果最好,其產氣量可達3745.11 79.54 mL。
摘要(英) Because the sharp rise in oil prices in recent years, and let the biomass energy has been re-valued(biomethane、biohydrogen、bioethanol、biodiesel), and rising environmental awareness of agricultural waste recycling is also increasing emphasis. Therefore, it is a very worthy subject of study.
In this study investigated the methane production by anaerobic co-digestion swine manure with rice straw. Mainly the parameter are temperature(40 ℃、55℃) and inoculum(improved number 1、improved number 2、improved number 3) to investigated the effect of methane production, and find the optimal operating condition to produce methane by anaerobic digestion with above two experiments. Finally,investigated the effect of swine manure(SW) with rice straw(RS) at three different SW to RS volatile solid ratio of 3:1, 1:1, 1:3 by optimal operating condition.
The results indicate that, the cumulative methane production was 3328.49 54.51 mL under the condition of temperature at 55℃ and add inoculum of improved number 3, and the cumulative methane production was the best. Cumulative methane production was 3745.11 79.54 mL under volatile solid ratio at 3:1 was the best in the experiment of different volatile solid ratio.
關鍵字(中) ★ 豬糞
★ 稻桿
★ 揮發固含量
★ 甲烷
關鍵字(英) ★ volatile solid
★ rice straw
★ swine manure
★ methane
論文目次 一、緒論 1
1-1 研究動機 1
1-2研究目的 2
二、文獻回顧 3
2-1生質能源 3
2-2生質甲烷 3
2-3厭氧消化 5
2-3-1有機物厭氧消化原理 5
2-3-2厭氧消化的特性 8
2-4影響厭氧消化的因子 9
2-4-1 pH值 9
2-4-2溫度 9
2-5稻桿的來源和處理方式 14
2-6稻桿的組成和前處理方式 16
2-6-1稻稈的組成 16
2-6-2稻桿的前處理方式 24
2-7厭氧纖維素之分解微生物 36
2-7-1 厭氧分解纖維素的菌種 36
2-7-2厭氧分解纖維素的菌種之應用 41
2-8 豬糞尿之處理概況 44
2-9 碳氮比 (C/N ratio)之影響 47
3-1 實驗規劃 49
3-2 實驗材料 50
3-2-1 分析藥品 50
3-2-2 馴養菌種 50
3-2-3 基質 52
3-3分析方法 53
3-5 實驗儀器設備 60
3-5-1 實驗裝置 60
3-5-2 實驗儀器 62
3-6 實驗方法 64
3-6-1 條件最佳化實驗 64
3-6-1-2 40℃恆溫厭氧發酵 65
3-6-2 在最佳條件下不同揮發固含量比實驗 66
四、實驗結果與討論 67
4-1 55℃厭氧發酵對產甲烷氣動力曲線圖之影響 67
4-1-1 無添加植種汙泥厭氧發酵對產甲烷氣動力曲線圖之影響 67
4-1-2 添加改良式1號植種汙泥厭氧發酵對產甲烷氣動力曲線圖之影響 69
4-1-3 添加改良式2號植種汙泥厭氧發酵對產甲烷氣動力曲線圖之影響 72
4-1-4 添加改良式3號植種汙泥厭氧發酵對產甲烷氣動力曲線圖之影響 74
4-2 40℃厭氧發酵對產甲烷氣動力曲線圖之影響 77
4-2-1 添加改良式1號植種汙泥厭氧發酵對產甲烷氣動力曲線圖之影響 77
4-2-2 添加改良式2號植種汙泥厭氧發酵對產甲烷氣動力曲線圖之影響 79
4-2-3 添加改良式3號植種汙泥厭氧發酵對產甲烷氣動力曲線圖之影響 81
4-3 最佳化條件 83
4-4 豬糞與稻桿在不同揮發固含量比對產甲烷氣之影響 84
五、結論與建議 87
5-1 結論 87
5-2 建議 87
六、參考文獻 88
參考文獻 [1] Appels L, Baeyens J, Degre`ve J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science. 2008;34:755-81.
[2] 經濟部能源局. 2010.
[3] Li Y, Yan XL, Fan JP, Zhu JH, Zhou WB. Feasibility of biogas production from anaerobic co-digestion of herbal-extraction residues with swine manure. Bioresource Technology. 2011;102:6458-63.
[4] Chen F, Lu SM, Wang E, Tseng KT. Renewable energy in Taiwan. Renewable and Sustainable Energy Reviews. 2010;14:2029-38.
[5] Rasi S, Veijanen A, Rintala J. Trace compounds of biogas from different biogas production plants. Energy. 2007;32:1375-80.
[6] Keshtkar A, Ghaforian H, Abolhamd G, Meyssami B. Dynamic simulation of cyclic batch anaerobic digestion of cattle manure. Bioresource Technology. 2001;80:9-17.
[7] 卓威廷,. 2009.
[8] Liu CF, Yuan XZ, Zeng GM, Li WW, Li J. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology. 2008;99:882-8.
[9] Raposo F, Borja R, Martín MA, Martín A, Rubiaa MADL, Rincón B. Influence of inoculum–substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: Process stability and kinetic evaluation. Chemical Engineering Journal. 2009;149:70-7.
[10] Zinder SH. Conversion of acetic acid to methane by thermophiles FEMS Microbiology Letters. 1990;75:125-37.
[11] Gunaseela VN. ANAEROBIC DIGESTION OF BIOMASS FOR METHANE PRODUCTION: A REVIEW. Biomass and Biornergy. 1997;13:83-114.
[12] Lay JJ, Li YY, Noike T. INFLUENCES OF pH AND MOISTURE CONTENT ON THE METHANE PRODUCTION IN HIGH-SOLIDS SLUDGE DIGESTION. Wat Res. 1997;31:1518-24.
[13] Mladenovska Z, Ahring BK. Growth kinetics of thermophilic Methanosarcina spp. isolated from full-scale biogas plants treating animal manures. FEMS Microbiology Ecology. 2000;31:225-9.
[14] Boe K, Karakashev D, Trably E, Angelidaki I. Effect of post-digestion temperature on serial CSTR biogas reactor performance. Water research. 2009;43:669-76.
[15] Kim M, Ahn YH, Speece RE. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Research. 2002;36:4369-85.
[16] Watanabe H, Kitamura T, Ochi S, Ozaki M. Inactivation of pathogenic bacteria under mesophelic and thermophilic conditions. Water Science Technology. 1997;36:25-32.
[17] Fezzani B, Cheikh RB. Thermophilic anaerobic co-digestion of olive mill wastewater with olive mill solid wastes in a tubular digester. Chemical Engineering Journal. 2007;132:195-203.
[18] Bousˇkova A, Doha´ nyos M, Schmidt JE, Angelidaki I. Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors. Water Research. 2005;39:1481-8.
[19] 行政院農業委員會農糧署. 2009.
[20] 莊義雄,. 稻田收穫後稻草處理與利用. 花蓮區農業專訊. 1996;15:18-9.
[21] 張志鵬,. 稻草、紙錢燃燒處理效率之探討. 碩士論文. 2006;國立聯合大學:環境與安全衛生工程研究所.
[22] 陳文恆,, 郭家倫,, 黃文松,, 王嘉寶,. 纖維酒精技術之發展. 植物種苗生技. 2007.
[23] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology. 2002;83:1-11.
[24] Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technology. 2005;96:1986-93.
[25] Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Biological pretreatment of cellulose: Enhancing enzymatic hydrolysis rate using cellulose-binding domains from cellulases. Bioresource Technology. 2011;102:2910-5.
[26] Zhang YHP. Reviving the carbohydrate economy via multi-product lignocellulose bioreWneries. Microbiol Biotechnol. 2008;35:367-75.
[27] Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 2005;96:673-86.
[28] LAUREANO-PEREZ P, TEYMOURI F, ALIZADEH H, DALE B. Understanding Factors that Limit Enzymatic Hydrolysis of Biomass:Characterization of Pretreated Corn Stover. Applied Biochemistry and Biotechnology. 2005;121-124:1081-100.
[29] Fengel D, Wegener G. Ultrastructure, Reactions. Wood Chemistry. 1984.
[30] Saha BC. Hemicellulose bioconversion. Microbiol Biotechnol. 2003;30:279-91.
[31] Hendriks ATWM, Zeeman G. Review:Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology. 2009;100:10-8.
[32] Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances. 2011.
[33] Weil J, Westgate P, Kohlmann K, Ladisch MR. Cellulose pretreatments of lignocellulosic substrates. Enzyme and Microbial Technology. 1994;16:1002-4.
[34] Bak JS, Ko JK, Han YH, Lee BC, Choi IG, Kim KH. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology. 2009;100:1285-90.
[35] Weifei Y, Tonglai Z, Yigang H, Li Y, Gang L, Haibo L, et al. Effect of microwave irradiation on TATB explosive. Journal of Hazardous Materials. 2009;168:952-4.
[36] Chen WH, Pen BL, Yu CT, Hwang WS. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technology. 2011;102:2916-24.
[37] Zhao R, Zhang Z, Zhang R, Li M, Lei Z, Utsumi M, et al. Methane production from rice straw pretreated by a mixture of acetic–propionic acid. Bioresource Technology. 2010;101:990-4.
[38] Moigne NL, Jardeby K, Navard P. Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydrate Polymers. 2010;79:325-32.
[39] 黃維凡,. 以前處理提升稻殻纖維素水解效率之研究. 2006.
[40] Gandi J, Holtzapple MT, Ferrer A, Byers FM, Turner ND, Nagwani M, et al. Lime treatment of agricultural residues to improve rumen digestibility. Animal Feed Science Technology. 1997;68:195-211.
[41] Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 2001;56:634-49.
[42] Jang HD, Chen KS. Production and characterization of thermostable cellulases from Streptomyces transformant T3-1. World Journal of Microbiology & Biotechnology. 2003;19:263-8.
[43] Lynd LR, Weimer PJ, Zyl WHV, Pretorius IS. Microbial Cellulose Utilization: Fundamentals and Biotechnology. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS. 2002;66:506-77.
[44] Haan RD, Rose SH, Lynd LR, Zyl WHV. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering. 2007;9:87-94.
[45] Zhang YHP, Lynd LR. Toward an Aggregated Understanding of Enzymatic Hydrolysis of Cellulose:Noncomplexed Cellulase Systems. BIOTECHNOLOGY AND BIOENGINEERING. 2004;88:797-824.
[46] Mansfield SD, Mooney C, Saddler JN. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress. 1999;15:804-16.
[47] Dadi AP, Varanasi S, Schall CA. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. BIOTECHNOLOGY AND BIOENGINEERING.95:904-10.
[48] Kuo CH, Lee CK. Enhancement of enzymatic hydrolysis of bagasse by N-methylmorpholine-N-oxide pretreatment step. The 13th Biochemical Engineering Conference. 2008.
[49] Kuo CH, Lin PJ, Lee CK. Production of ethanol via simultaneous saccharification and fermentation of phosphoric acid dissolution pretreated waste textile. The 14th Biochemical Engineering Conference. 2009.
[50] Converse AO, Matsuno R, Tanaka M, Taniguchi M. A Model of Enzyme Adsorption and Hydrolysis of Microcrystalline Cellulose with Slow Deactivation of the Adsorbed Enzyme. Biotechnology and Bioengineering. 1988;32:38-45.
[51] 林昀輝,, 白明德,, 盧文章,, 李宏台,. 纖維素物質水解技術. 化工資訊與商情. 2008:36-41.
[52] Jin S, Chen H. Structural properties and enzymatic hydrolysis of rice straw. Process Biochemistry. 2006;41:1261-4.
[53] Mergaert J, Lednicka´ D, Goris J, Cnockaert CM, Vos PD, Swings J. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. International Journal of Systematic and Evolutionary Microbiology. 2003;53:465-71.
[54] Morrison MaJM. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol Lett. 2000;185:109-15.
[55] Desvaux M. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev. 29:741-64.
[56] Demain AL, Newcomb M, David Wu JH. Cellulase, Clostridia, and Ethanol. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS. 2005;69:124-54.
[57] Xie S, Lawlor PG, Frost JP, Hud Z, Zhan X. Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. Bioresource Technology. 2011.
[58] Lynd LR, Zyl WHV, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Biochemical engineering. 2005;16:577-83.
[59] Zverlov VV, Kellermann J, Schwarz WH. Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics. 2006;5:3646-53.
[60] Galbe M., Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Biofuels. 2007;108:41-65.
[61] Nath K, Das D. Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol. 2004;65:520-9.
[62] Geng A, He Y, Qian C, Yan X, Zhou Z. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresource Technology. 2010;101:4029-33.
[63] 民國九十五年五月底台灣地區養豬頭數調查統計. 行政院農業委員會農糧署. 2006.
[64] 郭猛德,, 林晉卿,, 郭春芳,. 猪糞尿污泥之處理與利用. 行政院農業委員會畜產試驗所畜產研究季刊. 2000:397-408.
[65] 吳民貴,. 高雄縣大寮鄉猪糞尿生質能源集中式開發之研究. 碩士論文. 2006;輔英科技大學:環境工程與科學研究所.
[66] Wu X, Yao W, Zhu J, Miller C. Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresource Technology. 2010;101:4042-7.
[67] Zhu N. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresource Technology. 2007;98:9-13.
[68] Fong M, Wong JWC, Wong MH. Review on evaluation of compost maturity and stability of solid waste. Shanghai Environ. 1999;18:91-3.
[69] 楊世名,, 陳志強,, 曾紋利,, 陳俊宏,, 姚俊男,. 沼氣醱酵裝置之最佳化設計. 屏東科技大學機械工程學系專題實務製作. 1996.
指導教授 徐敬衡(Chin-hang Shu) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明