博碩士論文 983204071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.147.27.172
姓名 許文政(Wun-jheng Syu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用生物素改質之幾丁聚醣進行基因原位傳送
(The Use of Biotinylated Chitosan for In-situ Gene Delivery)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中將非病毒載體—幾丁聚醣以化學改質的方法,進行不同程度的
生物素接枝,並以正負電荷吸引之方式,將生物素幾丁聚醣與質體DNA,
以不同胺基/磷酸根莫耳比組裝成奈米粒子。經由動態雷射散射粒徑分佈儀
顯示,奈米粒子的粒徑大小分佈在66.8 nm 至109.8 nm 以及表面電位介於
21.6 至36.0 mV 之間,均適合應用於基因傳送。此外,經由生物素改質的
幾丁聚醣,依然能提供質體DNA 良好的包覆率與保護能力。同時由LDH
及MTS 測試顯示,生物素改質並不會影響生物合適性,甚至能減緩細胞毒
性。透過生物素與卵白素間作用力的調整,生物素之奈米粒子可以被固定
於基材表面進行基因原位傳送,相較於以懸浮方式送藥的未改質奈米粒
子,本方法可以提升約4.5 倍的轉染效率。
摘要(英) In this research, we modified chitosan, the non-viral vector, with different
degrees of biotin moieties. By electrostatic interaction, we prepared
self-assemble nanoparticles using biotinylated-chitosan and plasmid DNA in
different amine/phosphate ratio. The dynamic laser scattering experiment has
demonstrated that particle sizes of biotinylated nanoparticles were between the
66.8 nm to 109.8 nm and the Zeta potential was between 21.6 to 36.0 mV,
suggesting that these nanoparticles were suitable for gene delivery. In addition,
biotinylated chitosan may effectively bind DNA to protect it from DNase I
digestion. The LDH and MTS assays suggested that biotin modification did not
only maintain the biocompatibility of chitosan, but also reduce the cytotoxicity.
Through the optimatization of biotin-avidin interaction, biotinylated
nanoparticles may be immobilized on material surfaces for in situ gene delivery.
Compares to bolus gene delivery, our developed in situ gene delivery may
enhance the transfection efficiency of 4.5 folds. These results suggest that our
strategy successfully improved transfection efficiency of non-viral vectors.
關鍵字(中) ★ 生物素改質
★ 原位基因傳送
★ 幾丁聚醣
關鍵字(英) ★ Chitosan
★ in situ gene delivery
★ Biotinylation
論文目次 目錄
摘要........................................................................................................................I
Abstract ................................................................................................................ II
致謝..................................................................................................................... III
目錄.....................................................................................................................IV
圖目錄.............................................................................................................. VIII
表目錄.................................................................................................................. X
縮寫表.................................................................................................................XI
第壹章 序論...................................................................................................... 1
第貳章 文獻回顧.............................................................................................. 3
2-1 組織工程................................................................................................ 3
2-2 基因傳送療法........................................................................................ 5
2-3 基因載體................................................................................................ 7
2-4 原位基因傳送...................................................................................... 10
V
2-4-1 幾丁聚醣應用於原位基因傳送.............................................. 10
2-4-2 生物素與卵白素作用力.......................................................... 11
2-5 實驗假設.............................................................................................. 12
第參章 實驗材料與方法................................................................................ 14
3-1 試藥與原料.......................................................................................... 14
3-1-1 質體DNA ................................................................................ 14
3-1-2 細胞.......................................................................................... 16
3-1-3 藥品.......................................................................................... 16
3-2 儀器...................................................................................................... 18
3-3 試藥配製.............................................................................................. 19
3-4 質體DNA 純化................................................................................... 21
3-5 HEK293T 細胞培養............................................................................. 24
3-6 幾丁聚醣之分子量對轉染效率影響................................................. 27
3-6-1 細胞轉染.................................................................................. 27
VI
3-6-2 螢光表現量分析...................................................................... 28
3-6-3 ONPG 分析............................................................................... 28
3-7 生物素改質之幾丁聚醣製備............................................................. 31
3-7-1 生物素改質(Biotinylation) ...................................................... 31
3-7-2 生物素接枝量分析.................................................................. 31
3-8 生物素之奈米粒子製備及物理化學性質鑑定................................. 33
3-8-1 生物素之奈米粒子製備.......................................................... 33
3-8-2 雷射粒徑分佈儀分析.............................................................. 33
3-8-3 掃描式電子顯微鏡觀察.......................................................... 33
3-8-4 包覆率分析.............................................................................. 34
3-8-5 保護能力分析.......................................................................... 35
3-8-6 MTS 測試對細胞活性分析...................................................... 36
3-8-7 乳酸脫氫酶(LDH)測試對細胞毒性分析............................... 37
3-9 原位基因轉染...................................................................................... 39
VII
第肆章 結果與討論........................................................................................ 43
4-1 幾丁聚醣之分子量對轉染效率影響................................................. 43
4-2 生物素改質之幾丁聚醣製備............................................................. 47
4-2-1 生物素接枝量分析.................................................................. 49
4-3 奈米粒子物理化學性質鑑定............................................................. 51
4-3-1 動態雷射散射粒徑分佈儀...................................................... 51
4-3-2 掃描式電子顯微鏡觀察.......................................................... 54
4-3-3 包覆率分析.............................................................................. 55
4-3-4 保護能力分析.......................................................................... 60
4-3-5 MTS 測試對細胞活性分析................................................... 63
4-3-6 乳酸脫氫酶(LDH)測試對細胞毒性分析............................... 65
4-4 原位基因轉染...................................................................................... 67
第伍章 結論.................................................................................................... 76
參考文獻............................................................................................................. 97
VIII
圖目錄
圖 2 - 1 幾丁聚醣 (Chitosan)分子結構圖...................................................... 11
圖 3 - 1 pCMV-β結構圖.................................................................................. 14
圖 3 - 2 pEGFP-C3 結構圖................................................................................ 15
圖 4 - 1 β-Gal assay 反應圖............................................................................ 44
圖 4 - 2 生物素改質反應圖............................................................................. 47
圖 4 - 3 HABA assay 示意圖............................................................................. 49
圖 4 - 4 MTS assay 反應圖............................................................................... 64
圖 4 - 5 不同分子量的幾丁聚醣對細胞之轉染效率(pEGFP 轉染).............. 76
圖 4 - 6 不同分子量的幾丁聚醣對細胞之轉染效率(pCMVβ轉染) ............. 78
圖 4 - 7 生物素接枝程度分析(HABA assay).................................................. 79
圖 4 - 8 表面電位及粒徑大小分析................................................................. 80
IX
圖 4 - 9 掃描式電子顯微鏡............................................................................. 82
圖 4 - 10 螢光標定法分析包覆率.................................................................... 83
圖 4 - 11 電泳法分析包覆率............................................................................. 84
圖 4 - 12 保護能力分析.................................................................................... 85
圖 4 - 13 細胞活性分析(MTS assay)................................................................ 89
圖 4 - 14 細胞毒性分析(LDH assay)................................................................ 90
圖 4 – 15 藉由調整卵白素鍍盤濃度來控制Biotin-NPs 的原位基因效率... 91
圖 4 - 16 不同卵白素鍍盤濃度對轉染效率的影響........................................ 95
圖 4 - 17 DNA 劑量對轉染效率影響............................................................... 96
X
參考文獻 參考文獻
1. Langer, R. and J.P. Vacanti, "Tissue engineering." Science, 260(5110): p.
920-6. 1993
2. Tabata, Y., et al., "Biodegradable hydrogels for bone regeneration through
growth factor release." Pure Appl Chem, 70(6): p. 1277-1282. 1998
3. Kofron, M.D. and C.T. Laurencin, "Bone tissue engineering by gene
delivery." Adv Drug Deliv Rev, 58(4): p. 555-576. 2006
4. Hannallah, D., et al., "Gene therapy in orthopaedic surgery." J Bone Joint
Surg Am, 84A(6): p. 1046-1061. 2002
5. Jiang, Z.L., et al., "Local high-capacity adenovirus-mediated mCTLA4lg
and mCD40lg expression prolongs recombinant gene expression in skeletal
muscle." Mol Ther, 3(6): p. 892-900. 2001
6. Gardlik, R., et al., "Vectors and delivery systems in gene therapy." Med Sci
Monitor, 11(4): p. Ra110-Ra121. 2005
7. Hu, W.W., et al., "Development of adenovirus immobilization strategies for
in situ gene therapy." J Gene Med, 10(10): p. 1102-1112. 2008
99
8. Hu, W.W., et al., "Localized viral vector delivery to enhance in situ
regenerative gene therapy." Gene Ther, 14(11): p. 891-901. 2007
9. Nishida, J. and T. Shimamura, "Methods of reconstruction for bone defect
after tumor excision: a review of alternatives." Med Sci Monit, 14(8): p.
RA107-13. 2008
10. Paul, C.N., "Skin grafting in burns." Wounds, 20(7): p. 199-202. 2008
11. Niederauer, G.G., et al., "Bone grafting in arthroscopy and sports medicine."
Sports Med Arthrosc, 14(3): p. 163-8. 2006
12. Mooney, D.J. and A.G. Mikos, "Growing new organs." Sci Am, 280(4): p.
60-5. 1999
13. Shin, H., et al., "Biomimetic materials for tissue engineering." Biomaterials,
24(24): p. 4353-64. 2003
14. Vacanti, J.P. and R. Langer, "Tissue engineering: the design and fabrication
of living replacement devices for surgical reconstruction and transplantation."
Lancet, 354 Suppl 1: p. SI32-4. 1999
15. Lee, K.Y. and D.J. Mooney, "Hydrogels for tissue engineering." Chem Rev,
101(7): p. 1869-79. 2001
100
16. Macri, L., et al., "Growth factor binding to the pericellular matrix and its
importance in tissue engineering." Adv Drug Deliv Rev, 59(13): p. 1366-81.
2007
17. Lee, S.H. and H. Shin, "Matrices and scaffolds for delivery of bioactive
molecules in bone and cartilage tissue engineering." Adv Drug Deliv Rev,
59(4-5): p. 339-59. 2007
18. Lutolf, M.R., et al., "Repair of bone defects using synthetic mimetics of
collagenous extracellular matrices." Nat Biotechnol, 21(5): p. 513-518. 2003
19. Sheridan, M.H., et al., "Bioadsorbable polymer scaffolds for tissue
engineering capable of sustained growth factor delivery." J Control Release,
64(1-3): p. 91-102. 2000
20. Tabata, Y., "Tissue regeneration based on growth factor release." Tissue Eng,
9: p. S5-S15. 2003
21. Boontheekul, T. and D.J. Mooney, "Protein-based signaling systems in
tissue engineering." Curr Opin Biotech, 14(5): p. 559-565. 2003
22. Ulrich, K., et al., "Keratinocyte growth factor therapy in murine oleic
acid-induced acute lung injury." Am J Physiol-Lung C, 288(6): p. L1179-L1192.
2005
101
23. del Solar, G., et al., "Replication and control of circular bacterial plasmids."
Microbiol Mol Biol Rev, 62(2): p. 434-64. 1998
24. Franceschi, R.T., "Biological approaches to bone regeneration by gene
therapy." J Dent Res, 84(12): p. 1093-1103. 2005
25. Krebsbach, P.H., et al., "Gene therapy-directed osteogenesis:
BMP-7-transduced human fibroblasts form bone in vivo." Hum Gene Ther,
11(8): p. 1201-1210. 2000
26. Hu, W.W., et al., "Bone Regeneration in Defects Compromised by
Radiotherapy." J Dent Res, 89(1): p. 77-81. 2010
27. Tseng, W.C., et al., "Transfection by cationic liposomes using simultaneous
single cell measurements of plasmid delivery and transgene expression." J Biol
Chem, 272(41): p. 25641-25647. 1997
28. Varga, C.M., et al., "Quantitative analysis of synthetic gene delivery vector
design properties." Mol Ther, 4(5): p. 438-446. 2001
29. Crystal, R.G., "Transfer of Genes to Humans - Early Lessons and Obstacles
to Success." Science, 270(5235): p. 404-410. 1995
30. Oligino, T.J., et al., "Vector systems for gene transfer to joints." Clin Orthop
102
Relat R, (379): p. S17-S30. 2000
31. Hu, W.W., et al., "Digoxigenin modification of adenovirus to spatially
control gene delivery from chitosan surfaces." J Control Release, 135(3): p.
250-258. 2009
32. Hu, W.W., et al., "The use of reactive polymer coatings to facilitate gene
delivery from poly (epsilon-caprolactone) scaffolds." Biomaterials, 30(29): p.
5785-5792. 2009
33. Wolff, J.A., et al., "Direct Gene-Transfer into Mouse Muscle Invivo."
Science, 247(4949): p. 1465-1468. 1990
34. Herweijer, H. and J.A. Wolff, "Progress and prospects: naked DNA gene
transfer and therapy." Gene Ther, 10(6): p. 453-458. 2003
35. Niidome, T. and L. Huang, "Gene therapy progress and prospects: Nonviral
vectors." Gene Ther, 9(24): p. 1647-1652. 2002
36. Lasic, D.D. and D. Papahadjopoulos, "Liposomes Revisited." Science,
267(5202): p. 1275-1276. 1995
37. Huang, Y.C., et al., "Bone regeneration in a rat cranial defect with delivery
of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4
103
(BMP-4)." Gene Ther, 12(5): p. 418-426. 2005
38. Suh, W.H., et al., "Anti-JL1 antibody-conjugated poly (L-lysine) for
targeted gene delivery to leukemia T cells." J Control Release, 72(1-3): p.
171-178. 2001
39. Akinc, A., et al., "Synthesis of poly(beta-amino ester)s optimized for highly
effective gene delivery." Bioconjugate Chem, 14(5): p. 979-988. 2003
40. Bielinska, A.U., et al., "DNA complexing with polyamidoamine dendrimers:
Implications for transfection." Bioconjugate Chem, 10(5): p. 843-850. 1999
41. Kabanov, V.A., et al., "Interpolyelectrolyte complexes formed by DNA and
astramol poly(propylene imine) dendrimers." Macromolecules, 33(26): p.
9587-9593. 2000
42. Segura, T. and L.D. Shea, "Materials for non-viral gene delivery." Annu
Rev Mater Res, 31: p. 25-46. 2001
43. Bengali, Z., et al., "Gene delivery through cell culture substrate adsorbed
DNA complexes." Biotechnol Bioeng, 90(3): p. 290-302. 2005
44. Pannier, A.K., et al., "Substrate-mediated delivery from self-assembled
monolayers: effect of surface ionization, hydrophilicity, and patterning." Acta
104
Biomater, 1(5): p. 511-22. 2005
45. Jang, J.H., et al., "Surface adsorption of DNA to tissue engineering scaffolds
for efficient gene delivery." J Biomed Mater Res A, 77(1): p. 50-8. 2006
46. Singh, M., et al., "A modified process for preparing cationic
polylactide-co-glycolide microparticles with adsorbed DNA." Int J Pharm,
327(1-2): p. 1-5. 2006
47. Ohashi, S., et al., "Successful genetic transduction in vivo into synovium by
means of electroporation." Biochem Bioph Res Co, 293(5): p. 1530-1535. 2002
48. Uchida, E., et al., "Comparison of the efficiency and safety of non-viral
vector-mediated gene transfer into a wide range of human cells." Biol Pharm
Bull, 25(7): p. 891-897. 2002
49. Bengali, Z. and L.D. Shea, "Gene delivery by immobilization to
cell-adhesive substrates." Mrs Bull, 30(9): p. 659-662. 2005
50. Levy, R.J., et al., "Localized adenovirus gene delivery using antiviral IgG
complexation." Gene Ther, 8(9): p. 659-67. 2001
51. Shea, L.D., et al., "Gene delivery through cell culture substrate adsorbed
DNA complexes." Biotechnol Bioeng, 90(3): p. 290-302. 2005
105
52. Segura, T. and L.D. Shea, "Surface-tethered DNA complexes for enhanced
gene delivery." Bioconjugate Chem, 13(3): p. 621-629. 2002
53. Hunter, A.C., "Molecular hurdles in polyfectin design and mechanistic
background to polycation induced cytotoxicity." Adv Drug Deliv Rev, 58(14): p.
1523-1531. 2006
54. Onishi, H. and Y. Machida, "Biodegradation and distribution of
water-soluble chitosan in mice." Biomaterials, 20(2): p. 175-182. 1999
55. Rao, S.B. and C.P. Sharma, "Use of chitosan as a biomaterial: Studies on its
safety and hemostatic potential." J Biomed Mater Res, 34(1): p. 21-28. 1997
56. Aspden, T.J., et al., "Chitosan as a nasal delivery system: The effect of
chitosan solutions on in vitro and in vivo mucociliary transport rates in human
turbinates and volunteers." J Pharm Sci, 86(4): p. 509-513. 1997
57. Vinsova, J. and E. Vavrikova, "Recent advances in drugs and prodrugs
design of chitosan." Curr Pharm Design, 14(13): p. 1311-1326. 2008
58. Strand, S.P., et al., "Influence of chitosan structure on the formation and
stability of DNA-chitosan polyelectrolyte complexes." Biomacromolecules, 6(6):
p. 3357-3366. 2005
106
59. Masotti, A. and G. Ortaggi, "Chitosan Micro- and Nanospheres: Fabrication
and Applications for Drug and DNA Delivery." Mini-Rev Med Chem, 9(4): p.
463-469. 2009
60. Li, Z.S., et al., "Chitosan-alginate hybrid scaffolds for bone tissue
engineering." Biomaterials, 26(18): p. 3919-3928. 2005
61. Kim, T.H., et al., "Chemical modification of chitosan as a gene carrier in
vitro and in vivo." Prog Polym Sci, 32(7): p. 726-753. 2007
62. Mei, L., et al., "Immobilization of gene vectors on polyurethane surfaces
using a monoclonal antibody for localized gene delivery." J Gene Med, 8(6): p.
690-698. 2006
63. Green, N.M., "The molecular weight of avidin." Biochem J, 92(2): p.
16C-17C. 1964
64. Green, N.M., "Avidin. 1. The Use of (14-C)Biotin for Kinetic Studies and
for Assay." Biochem J, 89: p. 585-91. 1963
65. De Laporte, L. and L.D. Shea, "Matrices and scaffolds for DNA delivery in
tissue engineering." Adv Drug Deliv Rev, 59(4-5): p. 292-307. 2007
66. Zheng, J., et al., "Transfection of cells mediated by biodegradable polymer
107
materials with surface-bound polyethyleneimine." Biotechnol Prog, 16(2): p.
254-7. 2000
67. Mansouri, S., et al., "Characterization of folate-chitosan-DNA nanoparticles
for gene therapy." Biomaterials, 27(9): p. 2060-5. 2006
68. Buschmann, M.D., et al., "High efficiency gene transfer using
chitosan/DNA nanoparticles with specific combinations of molecular weight and
degree of deacetylation." Biomaterials, 27(27): p. 4815-4824. 2006
69. Pego, A.P., et al., "Improving chitosan-mediated gene transfer by the
introduction of intracellular buffering moieties into the chitosan backbone." Acta
Biomater, 5(8): p. 2995-3006. 2009
70. Rodriguez, J.R., et al., "DNA-chitosan complexation: A dynamic light
scattering study." Colloid Surface A, 339(1-3): p. 145-152. 2009
71. Wagner, E., et al., "Transferrin Polycation DNA Complexes - the Effect of
Polycations on the Structure of the Complex and DNA Delivery to Cells." Proc
Natl Acad Sci U S A, 88(10): p. 4255-4259. 1991
72. MacLaughlin, F.C., et al., "Chitosan and depolymerized chitosan oligomers
as condensing carriers for in vivo plasmid delivery." J Control Release, 56(1-3):
p. 259-272. 1998
108
73. Mao, H.Q., et al., "Chitosan-DNA nanoparticles as gene carriers: synthesis,
characterization and transfection efficiency." J Control Release, 70(3): p.
399-421. 2001
74. Erbacher, P., et al., "Chitosan-based vector/DNA complexes for gene
delivery: Biophysical characteristics and transfection ability." Pharm Res, 15(9):
p. 1332-1339. 1998
75. Huang, M., et al., "Transfection efficiency of chitosan vectors: Effect of
polymer molecular weight and degree of deacetylation." J Control Release,
106(3): p. 391-406. 2005
76. Zhang, N., et al., "Mannan-Modified Solid Lipid Nanoparticles for Targeted
Gene Delivery to Alveolar Macrophages." Pharm Res, 27(8): p. 1584-1596.
2010
77. Kim, J.H., et al., "Optimization of 25 kDa linear polyethylenimine for
efficient gene delivery." Biologicals, 35(3): p. 165-171. 2007
78. Lobner, D., "Comparison of the LDH and MTT assays for quantifying cell
death: validity for neuronal apoptosis?" J Neurosci Meth, 96(2): p. 147-152.
2000
79. Leong, K.W. and A.F. Adler, "Emerging links between surface
109
指導教授 胡威文(Wei-wen Hu) 審核日期 2011-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明