博碩士論文 983206009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:35.175.191.168
姓名 陳映慈(Ying-tzu Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例
(Development floc image colorimetic analysis for coagulation monitoring-for the treatment of river water )
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 石門水庫分層取水對於前加氯與混凝成效之影響★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析
★ 地表水中氨氮之生物急毒性研究★ 水足跡盤查分析與節水策略-以某印刷電路板軟板廠為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 地表原水所含的物質種類相當繁多,主要藉由在水中加入混凝劑,使水中顆粒凝聚形成膠羽,以利後續處理去除。目前淨水廠主要以操作經驗或瓶杯實驗決定藥劑量,常有過量加藥的問題產生,使得藥劑量成本及污泥量增加。本研究團隊利用影像分析技術監測膠羽在混凝過程之長成變化,發現在混凝過程中顆粒的變化會反應於RGB值上,可利用RGB值之變化程度來判斷混凝效果及膠羽長成之好壞。本研究則沿用此套監測系統,應用於地表原水之混凝程序監測,在不同初始濁度及藥劑量下,探討光訊號RGB值的變化情況,以及利用影像軟體分析膠羽之大小及結構,加以了解膠羽長成情形與RGB值之間的關聯性,以建立此套系統更加完善的可行性。
研究結果顯示,快混階段之RGB值下降趨勢越明顯及標準偏差計算結果越大時,混凝效果越好,而慢混階段之RGB值跳動幅度越大及標準偏差計算結果越大時,長成膠羽越大。地表原水呈現土黃色,導致在水樣變化過程中R值的變化程度較B值及G值明顯,且透過B-R及G-R快混階段的下降斜率值與加藥量的關係,可判斷出有效加藥範圍,利用殘餘濁度驗證後也確定此判斷方法是可行的。另外在混凝過程中所得到之影像藉由影像分析軟體分析膠羽粒徑與結構後之結果與RGB之標準偏差值在混凝過程中變化趨勢也相符,表示利用RGB之標準偏差值大小判斷混凝及膠羽長成好壞也是可行的。此套系統監測確實可運用於實場原水之監測,除了能夠適時的反應出混凝過程中顆粒變化及膠羽長成的情形外,也可藉由光訊號RGB值快速得知混凝效果好壞,以達控制加藥之目的。
摘要(英) Coagulation is an important process for the removal of suspended particles and dissolved substance from water. The dosage of coagulant is usually determined by jar test or the experience of operators, which usually leads to overdose of coagulant. Overdose of coagulant causes high cost for chemicals and sludge treatment. A novel monitoring technique, floc image colorimetric analysis (FICA), have been developed in our research groups to monitor performance of coagulation. The evolution of the red, green, and blue (RGB) values, obtained by analyzing the image of the suspension, can be used to determine performance of the coagulation. In this research, river water was used to examine whether this technique can be applied when there are colored particles and dissolved substances. Also, more image analyses were conducted to see if FICA can provide more information to determine the performance of coagulation of source water. The flocs size and structure were also analyzed to understand correlations between the flocs growth and the RGB values.
The results showed that when the coagulation was effective, the RGB values decreased significantly and the standard deviation of the RGB values increased within rapid-mixing. Then, as the flocs became bigger during the slow-mixing, the flocs passed through the observation window and scattered great amount of light. As the consequence, the RGB values jumped up and the standard deviation of the RGB values increased. Because of the color of clay, the color of the raw water is light brown, in which the changes in the R-value are more obvious than G- and B-values. It is also found that the optimal dosage of coagulant occurred when the slopes of B-R or G-R are the same for the neighboring dosages, which indicate the structure of flocs are similar. The evolution of the standard deviations of RGB values agreed with evolution of floc size obtained from image analysis. In conclusion, by conducting coagulation of river water, it is sure that FICA, which can determine the optimal dosage during rapid- or slow-mixing, can be a useful tool for the monitoring of coagulation processes. Also flocs can be observed and further analyzed to examine the floc size and shapes.
關鍵字(中) ★ 影像分析
★ 多元氯化鋁
★ 混凝
★ 光學監測
關鍵字(英) ★ optical monitoring
★ coagulation
★ PACl
★ image analysis
論文目次 圖目錄 IV
表目錄 VIII
第一章 前言 - 1 -
1-1 研究緣起 - 1 -
1-2 研究目的 - 2 -
第二章 文獻回顧 - 4 -
2-1 濁度之來源與性質 - 4 -
2-2 混凝理論 - 5 -
2-2-1 膠體粒子 - 5 -
2-2-2 混凝基本特性 - 7 -
2-3 多元氯化鋁(PACl)之混凝機制與特性 - 11 -
2-4 混凝效果之評估方法 - 13 -
2-5 碎形理論 - 15 -
2-5-1 碎形的特性 - 15 -
2-5-2 碎形維度 - 18 -
2-5-3 碎形維度之運用 - 19 -
2-6 監測設備 - 21 -
2-6-1 流導電流偵測技術 - 23 -
2-6-2 光纖膠羽偵測技術 - 24 -
2-6-3 膠羽影像色彩分析技術 - 25 -
2-7 光學原理與色彩特性 - 27 -
2-7-1 彩色光譜 - 28 -
2-7-2 RGB色彩模式 - 28 -
2-7-3 光散射理論 - 30 -
2-7-4 光影像訊號之應用 - 31 -
第三章 研究方法 - 34 -
3-1 研究內容 - 34 -
3-2 實驗材料 - 35 -
3-3 實驗設備 - 36 -
3-4 實驗方法 - 37 -
3-4-1 實驗流程 - 37 -
3-4-2 監測影像分析 - 38 -
3-5 數據處理 - 40 -
3-5-1 光訊號變化圖 - 40 -
3-5-2 標準偏差計算 - 45 -
第四章 結果與討論 - 51 -
4-1 快混期間RGB下降斜率與加藥量之關係 - 51 -
4-2 不同原水濁度與RGB各值之相關性 - 58 -
4-2-1 濁度與監測影像及RGB值之關係 - 58 -
4-2-2 混凝前後影像RGB值之變化 - 60 -
4-2-3 不同加藥量之G B值與R值之差異比較 - 66 -
4-2-4 快混階段B-R與G-R之下降斜率與加藥量關係 - 70 -
4-3 不同藥劑量對RGB值標準偏差之影響 - 76 -
4-4 膠羽分析 - 90 -
4-4-1 膠羽粒徑分佈及碎形維度值 - 93 -
4-4-2 不同初始濁度其碎形維度及粒徑之關係 - 99 -
第五章 結論與建議 - 103 -
5-1 結論 - 103 -
5-2 建議 - 105 -
參考文獻 - 106 -
附錄A - 112 -
附錄B - 126 -
參考文獻 1. W. Stumm and J. J. Morgan, “The solid-solution interface”, Aquatic Chemistry, pp.612-614, (1981).
2 . A. Amirtharagjah and C.R. O’’Melia, “Coagulation processes:destabilization, mixing and flocculation”, Water Quality & Treatment.4th, pp.269-365, (1990).
3. 甘其銓,“淨水場混凝之快混操作參數決定:去穩機制與聚集動力解析”,國立交通大學環境工程研究所博士論文,新竹(2000).
4. Y. Ganz, “Water treatment”, American Water Works Association, 1, (2003).
5. J. E. Van Benschoten and J. K. Edzwald, “Chemical aspect of coagulation using aluminum salt-І hydrolytic reactions alum and polyaluminum chloride”, Water Research, 24(12), pp. 1519-1526, (1990)
6. J. M. Akitt and A. Farthing, “Aluminum-27 nuclear magnetic resonance aluminum metal”, Jourmal of the Chemical Society Transactions, pp.1624, (1981).
7. W. Stumm and C. R. O’’Melia, “Stoichometry of coagulation”, Journal American Water Works Association, 60(5), pp.514, (1968).
8. J. E. Van Benschoten, “Effects of temperature and pH on residual aluminum for alum and polyaluminum coagulants ”, Water Supply, 4, pp.49-55, (1992).
9. C. H. Yao, “ The preparation of polymeric aluminum chloride and its application in water treatment”, Doctoral Dissertation, the Johns Hopkins University, Baltimore, MD, (1987).
10. 杭子樵,“聚氯化鋁之生產、品質控制與應用”,技術報告,台灣省自來水公司,台中(2002).
11. 翁韻雅,“以高分子凝聚劑處理高濁度原水之研究”,國立成功大學環境工程研究所碩士論文,台南(2003).
12. M. R. Wiesner and R. Klute, “Properties and measurements of particulate contaminants in water”, Treatment Process Selection for Particle Removal, Edited by J. B. Mcewen, AWWARF, pp.35-72, (1998).
13. B. B. Mandelbrot, “ The fractal geometry of nature”, New York W. H. Freeman (1983).
14. 吳文成,碎形Fractal,http://www.atlas-zone.com/complex/fractals/index.html
15. 林伯航,“應用碎形分析河川棲地分佈之時空特性”,國立中央大學土木工程研究所碩士論文,桃園(1994).
16. R. K. Chakraborti, J. F. Atkinson and J. E. VanBenschoten, “Characterization of alum floc by image analysis”, Environmental Science & Technology, 34(18), pp.3969-3976, (2000).
17. L. M. Sander, “Theory of fractal growth processes”. Kinetics of Aggregation and Gelation, Family F. and Landau D.Pl. (Ed.), pp.13-18, (1984).
18. Q. Jian and B. E. Logan, “Fractal dimensions of aggregates from shear devices”, Journal American Water Works Association, 88(2), pp.100-113, (1996).
19. J. Gregory, “The density of particle aggregates”, Water Science and Technology, 36(4), pp.1-13, (1997).
20. Y. Adachi and Y. Tanaka, “Settling velocity of an aluminium-kaolinite floc”, Water Research, 31(3), pp.449-454, (1997).
21. G. Bushell, “Forward light scattering to characterise structure of flocs composed of large particles”, Chemical Engineering Journal, 111, pp.145-149, (2005).
22. 賴虹任,“以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝”,國立中央大學環境工程研究所碩士論文,桃園(2010).
23. S. K. Dentel and K. M. Kingery, “Using streaming current detector in water treatment ”, Journal American Water Works Association, pp.85-94, (1989).
24. S. Bishop, “Use of the streaming current detector at langsett water-treatment works”, Water and Environment, 6(3), pp. 1-9, (1992)
25. 徐宏銘,“應用流導電流偵測技術決定混凝最佳加藥量之研究”,國立交通大學環境工程研究所碩士論文,新竹(1992).
26. 張進興,“應用流導電流偵測技術用於淨水場混凝加藥自動控制之研究”,國立交通大學環境工程研究所碩士論文,新竹(1993).
27. J. Gregory and D.W. Nelson, “A new optical method for flocculation monitoring”, Solid-Liquid Separation, Ellis Horwood, Chichester, pp. 172–182, (1984).
28. T. O. Kayode and J. Gregory , “A new technique for monitoring sludge conditioning”, Water Research, 22(1), pp.85-90, (1988).
29. J. Gregory and W. D. Nelson, “Monitoring of aggregates in flowing suspension”, Colloid and Surfaces, 18, pp.175-188, (1986).
30. J. Eisenlauer and D. Horn, “Fiber-optic sensor for flocculant dose control in flowing suspension”, Colloid and Surfaces, 14, pp.121-134, (1985).
31. 甘其銓,“淨水場濁度去除效能評估及混凝監測之研究—以豐原淨水場為例”,國立交通大學環境工程研究所碩士論文,新竹(1997).
32. 吳如雅,“非接觸式光學監測混凝系統技術之發展”,國立中央大學環境工程研究所碩士論文,桃園(2008).
33. 劉倚汎,“以光學影像連續監測銅廢水化學沉降之技術發展”,國立中央大學環境工程研究所碩士論文,桃園(2009).
34. M. Elimelech, J. Gregory, X. Jia and R.A. Williams, “Particle deposition and aggregation-measurement, modeling and simulation”, Elsevier, UK, (1995).
35. 鄭文伯、高瑜苹、余瑞芳,“利用濁度量測值之變異性來推估膠凝過程膠羽顆粒成長趨勢之系統與方法”,中華民國專利96119832(2007).
36. R. Tilly, “Colour and the optical properties of materials”, WILEY, UK, pp. 110-111, (2000)
37. 宋慧琴,“眼應用光學基礎”,新文京開發出版股份有限公司,台北(2007).
38. J. Leentvaar and M. Rebhun, “Strength of ferric hydroxide flocs” , Water Research, 17, pp.895–902, (1983).
39. C. J. Chin, S. Yiacoumi, C. Tsouris, S. Relle and S. B. Grant, “Secondary minimum separation of superparamagnetic colloidal particles”, Langmuir, 16, pp.3641–3650, (2000).
40. G.R. Xu, C.S.B. Fitzpatrick and J. Gregory, “Floc formation, size distribution, and its transformation detected by online laser particle counter”, Separation Science and Technology, 43, pp.1725–1736, (2008).
41. P. Jarvis, S. A. Parsons, R. Henderson. N. Nixson and B. Jefferson,“The practical application of fractal dimension in water treatment practice–the impact of polymer dosing”, Separation Science and Technology, 43, pp.1785-1797, (2008).
42. 雷一弘、廖述良,“發明專利說明書-水中色度監測儀”,經濟部智慧財產局,台北(1990).
43. 余瑞芳、鄭文伯、朱美玲,“監測廢水中懸浮微粒粒徑分佈之系統與方法”,經濟部智慧財產局,中華民國專利96108076(2007).
44. W. P. Cheng, J. N. Chang, P. H. Chen, R. F. Yu, Y. W. Huang and Y. J. Hsieh, “Monitoring floc formation to achieve optimal flocculation in water treatment plants”, Environmental Engineering Science, 27(6), pp.523-530, (2010).
45. 陳韋弘,“混凝劑Al型態對高濁水混凝行為之影響”,國立交通大學環境工程研究所碩士論文,新竹(2005).
46. U. W. Kaeding, “A direct comparsion between aluminum sulfate and polyalumium chloride as coagulants in water treatment plant”, Water Supply, 10(4), pp,119-132, (1992).
47. 吳容明,“膠羽的透過率及其內部結構”,國立台灣大學化學工程研究所博士論文,台北(2001).
48. R. K. Chakraborti, K. H. Gardner, J. F. Atkinson and J. E. Van Benschoten, “Changes in fractal dimension during aggregation”, Water Research, 37, pp.873-883, (2003).
49. C. H. Kan and C. P. Huang, “coagulation monitoring in surface water treatment facilities”, Water Science and Technology, 38(3), pp.237-244, (1998).
50. R. J. Francois, “Strength of aluminum hydroxide flocs”, Water Research, 21(9), pp.1023-1030, (1987).
51. 林玉君,“以混凝-絮凝處理高濁度原水之研究”,國立台灣科技大學化學工程研究所碩士論文,台北(1990).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2012-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明