博碩士論文 983206011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.222.148.124
姓名 黃鈺臻(Huang Yu-Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 磷系廢水化學沉降處理系統之影像訊號分析
(The floc color image analysis of the phosphorus wastewater chemical precipitation treatment system)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以鈣鹽去除工業廢水中的磷酸是常見的處理方法,促使磷酸根離子與鈣離子結合,並提高水中的pH值降低溶解度,藉由固態膠羽顆粒的形成,利用固液分離方式去除磷酸。本研究團隊目前已知膠羽影像色度分析技術( FICA )能即時監測膠羽顆粒的混凝行為,可利用RGB變化程度來判斷混凝效果和膠羽長成之依據,因此藉由FICA系統分析RGB值與膠羽變化情形之間關聯性,除了探討FICA系統監測化學沉降之可行性,並了解實驗參數的影響以及磷酸鈣化學沉降情況。研究結果顯示,RGB值隨著時間先上升後下降,最後呈平穩起伏,由在不同pH與Ca/P下RGB變化的差異可知,FICA監測系統能適時的反應出化學沉降中膠羽變化的情形,隨著初始pH值越高或是Ca/P比例增加,RGB變化趨勢明顯地提早。從RGB變化趨勢可知,當快混階段之上升斜率由大變小時,以及慢混階段之標準偏差(SD)越大時,所形成的膠羽越大;另外,B值和R值對白色顆粒變化反應較明顯,當顆粒越緊實時影像越亮白,因此B-R值越大,而且B-R跳動幅度越大則粒徑越大,表示磷酸去除率越好且化學沉降性佳。從膠羽顆粒狀態與RGB值之間各種相關的探討可知,FICA系統能應用於監測化學沉降,並能藉由RGB變化趨勢了解膠羽顆粒形成情況。
摘要(英) Chemical precipitation is commonly used for the removal of phosphorous species from industrial wastewater. Floc image colorimetric analysis (FICA) has been developed to monitor coagulation process. The objective of this work is to explore the feasibility of FICA for the monitoring of chemical precipitation. Also, the influences of experimental parameters and the degrees of precipitation on RGB values were investigated. The results showed that the RGB values increased significantly and then decreased, followed by a steady undulation. It was shown that the changes of and the differences between RGB values were affected by the solution pH and Ca/P. At higher solution pH or Ca/pH, the turning points in the RGB patterns showed up earlier. Also, when the flocs became bigger, the rising slopes of RGB values decreased, the standard deviation (SD) became greater. Because the B and R values were more sensitive to the white images, which indicated that the compactness of flocs, it was found the B-R values and ranges were greater when the particles became more compact and bigger and the removal efficiency was also higher. This work concluded that FICA applied to monitor the chemical precipitation, and various analyses of RGB values were able to understand the growth of flocs.
關鍵字(中) ★ 光學監測
★ 影像訊號分析
★ 磷酸鈣化學沉降
關鍵字(英) ★ image analysis
★ optical monitoring
★ chemical precipitation
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 4
第二章 文獻回顧 5
2-1 薄膜電晶體液晶顯示器(TFT-LCD)之廢水特性與處理 5
2-1-1 TFT-LCD之簡述 5
2-1-2 TFT-LCD廢水來源及處理概況 6
2-2 化學沉降理論 11
2-2-1 無機顆粒之形成機制 14
2-2-2 影響因子 17
2-3 影像監測系統 23
2-3-1 光學基本理論 23
2-3-2 影像處理系統 27
2-3-3 混凝光學監測技術 30
第三章 研究方法 40
3-1 研究內容 40
3-2 化學沉降模場實驗 42
3-2-1 實驗藥品 42
3-2-2 實驗設備 43
3-2-3模場架設 46
3-2-4實驗流程 46
3-3 分析設備 48
3-3-1水質分析-離子層析儀(Ion chromatography, IC) 48
3-3-2 膠羽組成分析 48
3-3-3 拍攝影像處理 49
第四章 結果與討論 51
4-1 初始pH值及Ca/P對處理成效之影響 52
4-1-1 pH值及濁度值(NTU)與磷酸鈣化學沉降之關係 52
4-1-2 pH值與Ca/P的影響 55
4-2 光散射訊號值(RGB)變化圖 60
4-2-1 光訊號基本分析 60
4-2-2 不同操作條件下之光散射訊號變化 63
4-3 RGB變化趨勢之比較 71
4-4 快混期間RGB值上升斜率變化與操作條件之關係 81
4-5 慢混階段光訊號標準偏差值(SD)與膠羽狀態之相關性 90
4-6 膠羽顆粒狀態與RGB各值之相關性 95
4-6-1 在不同操作條件下RGB三值所各佔的比例變化及差異比較 96
4-6-2 B值、B-R值及跳動幅度的探討 107
第五章 結論與建議 113
5-1 結論 113
5-2 建議 116
參考文獻 117
附錄A 磷酸鈣鹽膠羽顆粒分析 127
附錄B 監測影像 137
參考文獻 1.經濟部工業局,“光電半導體業安全衛生自主管理實務手冊” (2009)。
2.陳益滽,“廢溶劑回收系統於TFT-LCD製造廠之應用”,奈米通訊,12 (2005)。
3.財團法人中興工程顧問社,“高科技產業廢水水質特性分析及管制標準探討計畫(EPA-96-G104-02-222)”,行政院環境保護署編印(2007)。
4.R.M. Harrison,“Pollution:Causes, Effects, and Control”, The Royal Society of Chemistry, 3rd ed., London (1996).
5.G. Kiely,“Environmental Engineering”, McGraw-Hill, New York (1997).
6.行政院環境保護署。
7.西久保靖彥,“圖解薄型顯示器入門”,五南圖書(2007)。
8.曾治乾、周珊珊、鄒倫,“事業廢水污染預防及防治管理工作計畫 (EPA-94-G103-02-202)”,財團法人工業技術研究院(2005)。
9.廖威智,“薄膜電晶體液晶顯示器(TFT-LCD)製程有機廢水處理與回收再利用之研究”,國立交通大學環境工程研究所碩士論文,新竹(2003)。
10.財團法人中興工程顧問社,“高科技產業廢水水質特性分析及管制標準探討計畫(EPA-96-G104-02-222)”,行政院環境保護署編印(2007)。
11.杜建德,“TFT-LCD環保運作概述” (2005)。
12.廖威智,“薄膜電晶體液晶顯示器(TFT-LCD)製程有機廢水處理與回收再利用之研究”,國立交通大學環境工程研究所碩士論文,新竹(2003)。
13.曾治乾、周珊珊、鄒倫,“事業廢水污染預防及防治管理工作計畫 (EPA-94-G103-02-202)”,九十四年度行政院環境保護署施政計畫(2005)。
14.陳思偉,“新竹科學工業園區高科技產業廢水分析與對承受水體之影響研究”,國立清華大學化學系博士論文,新竹(2004)。
15.環保署,“半導體研磨廢水及光電業廢水水質特性分析及管制標準探討計畫”,行政院環保署(2007)。
16.C.N. Sawyer,“Biological engineering in sewage treatment”, Sewage Works Journal, 16(5), 925–935 (1944).
17.W. Rudolfs,“Phosphates in sewage and sludge treatment. I. Quantities of phosphates”, Sewage Works Journal, 19(1), 43–47 (1947).
18.S. Rybicki,“Phosphorus removal from wastewater:A Literature Review- Advanced Wastewater Treatment”, E. Plaza, E. Levlin, B. Hultman (Editors) (1997).
19.G.K. Morse, S.W. Brett, J.A Guy, and J.N. Lester,“Review:Phosphorus removal and recovery technologies”, Science of the Total Environment, 212(1), 69–81 (1998).
20.V.L. Snoeyink and D. Jenkins,“Water Chemistry”, John Wiley & Sons (1980).
21.M. Giulietti, M.M. Seckler, S. Derenzo, M.I. Re, and E. Cekinski, “Industrial crystallization and precipitation from solutions:state of the technique”, Brazilian Journal of Chemical Engineering, 18(4), 423–440 (2001).
22.黃汝賢、紀長國、吳春生、何俊杰和尤伯卿,“環工化學”,二版,三民書局(2002)。
23.L. Wang and G.H. Nancollas,“Calcium orthophosphates:crystallization and dissolution”, Chemical Reviews, 108(11), 4628–4669 (2008).
24.黃志彬,“無機性廢水處理-廢水處理專責人員訓練教材”, 初版,行政院環保署訓練所(2009)。
25.H.E.L. Madsen and G. Thorvardarson,“Precipitation of calcium phosphate from moderately acid solution”, Journal of Crystal Growth, 66(2), 369–376 (1984).
26.G.H. Nancollas,“Physical chemistry of crystal nucleation, growth and dissolution of stones”, Metabolic basis and clinical practice, Churchill Livingstone, Edinburgh, 71–85 (1990).
27.H.E.L. Madsen and F. Christensson,“Precipitation of calcium phosphate at 40 °C from neutral solution”, Journal of Crystal Growth, 114(4), 613–618 (1991).
28.N. Andritsos, S.G. Yiantsios, and A.J. Karabelas,“Calcium phosphate scale formation from simulated milk ultrafiltrate solutions”, Food and Bioproducts Processing, 80(4), 223–230 (2002).
29.A. Ferreira, C. Oliveira, and F. Rocha,“The different phases in the precipitation of dicalcium phosphate dihydrate”, Journal of Crystal Growth, 252(4), 599–611 (2003).
30.K. Hosni, S. Ben Moussa, A. Chachi, and M. Ben Amor,“The removal of PO43− by calcium hydroxide from synthetic wastewater: optimisation of the operating conditions”, Desalination, 223, 337–343 (2008).
31.T. Moeller, and R. O’Connor,“Ions in aqueous system”, McGraw-Hill Book company, New York (1972).
32.C.A. Orme and J.L. Giocondi,“The use of scanning probe microscopy to investigate crystal-fluid interfaces”, 916, 342–362 (2007).
33.A.K. Lynn and W. Bonfield, “A novel method for the simultaneous, titrantfree control of pH and calcium phosphate mass yield”, Accounts of ChemicalRresearch, 38(3), 202–207 (2005).
34.M. Maurer and M. Boller,“Modeling of phosphorus precipitation in wastewater treatment plants with enhanced biological phosphorus removal”, Water Science and Technology, 39(1), 147–163 (1999).
35.W. Stumm and J.J. Morgan,“Aquatic Chemistry:Chemical Equilibria and Rates in Natural Waters”, John Wiley & Sons, 3rd ed., New York (1996).
36.R.W. Marshall and G.H. Nancollas,“The kinetics of crystal growth of dicalcium phosphate dihydrate”, The Journal of Physical Chemistry, 73(11), 3838–3844 (1969).
37.H. McDowell, T.M. Gregory, and W.E. Brown,“Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37 °C,” Journal of research of the National Bureau of Standards, 81(3), 273–281 (1977).
38.R.Z. LeGeros,“Calcium phosphates in oral biology and medicine”, Monographs in Oral Sciences, 15, 1-201, New York (1991).
39.M.S. Johnsson and G.H. Nancollas,“The role of brushite and octacalcium phosphate in apatite formation”, Critical Reviews in Oral Biology & Medicine, 3(1-2), 61–82 (1992).
40.L. F. Guo, W. H. Wang, W. G. Zjang, and C. T. Wang,“Effects of synthesis factors on the morphology, crystallinity and crystal size of hydroxyapatite precipitation”, Journal of Harbin Institute of Technology, 12(6), 656–660 (2005).
41.O. Mekmene, S. Quillard, T. Rouillon, J. Bouler, Michel Piot, and F. Gaucheron,“Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions”, Dairy Science Technology, 89, 301–316 (2009).
42.M.J. Larsen and S.J. Jensen,“Solubility study of the initial formation of calcium orthophosphates from aqueous solutions at pH 5-10”, Archives of Oral Biology, 31(9), 565–572 (1986).
43.T. Moutin, J.Y. Gal, H.E. Halouani, B. Picot, and J. Bontoux,“Decrease of phosphate concentration in a high rate pond by precipitation of calcium phosphate:Theoretical and experimental results”, Water Research, 26(11), 1445–1450 (1992).
44.L. Montastruc, C. Azzaro-Pantel, B. Biscans, M. Cabassud, and S. Domenech,“A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor”, Chemical Engineering Journal, 94(1), 41–50 (2003).
45.N. C. Lu and J. C. Liu, “Removal of phosphate and fluoride from wastewater by a hybrid precipitation–microfiltration process”, Separation and Purification Technology, 74(3), 329–335 (2010).
46.W. Stumm and J.J. Morgan,“Aquatic Chemistry:an introduction emphasizing chemical equilibria in natural waters”, John Wiley & Sons, 2nd ed., New York (1981).
47.C. Y. Cheng, J.F. Atkinson, Associate Member, ASCE, J.E. VanBenschoten, M.I. Bursik, and J.V. DePinto,“Image-base system for particle counting and sizing”, Journal Environmental Engineering, 126(3), 258–266 (2000).
48.L.M. Oberdier,“An instrumentation system to automate the analysis of fuel-spray images using computer vision”, Liquid particle size measurement techniques, 123–126 (1984).
49.D. Eisma, T. Schuhmacher, H. Boekel, J. Van Heerwaarden, H. Franken, M. Laan, A. Vaars, F. Eijgenraam, and J. Kalf,“A camera and image-analysis system for in situ observation of flocs in natural waters”, Netherlands Institute for Sea Research, 27(1), 43–56 (1990).
50.Y. Zhang, D.G. Talley, and Bachalo,“An image-processing technique for determining focus and statistical information about nonspherical particles in sprays”, Liquid particle size measurement techniques, 2, 128–141 (1990).
51.A.T. Hanson and J.L. Cleasby,“The effects of temperature on turbulent flocculation:Fluid dynamics and chemistry”, Journal American Water Works Association, 82(11), 56–73 (1990).
52.M.M. Clark and J.R.V. Flora ,“Floc restructuring in varied turbulent mixing”, Journal of Colloid Interface and Science, 147(2), 407–421 (1991).
53.R. C. Chen and L. S. Fan,“Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid fluidized beds”, Chemical Engineering Science, 47(13-14), 3615–3622 (1992).
54.R.K. Chakraborti and J.F. Atkinson,“Dependence of perceived aggregate size on pixel resolution using an imaging method”, Water Supply:Research and Technology, 55(7-8), 439–451 (2006).
55.J. Gregory and D.W. Nelson,“A new optical method for flocculation monitoring”, In Solid-Liquid Separation (Edited by Gregory J.), 172–182, Ellis Horwood, Chichester (1984).
56.J. Gregory and D.W. Nelson,“Monitoring of aggregates in flowing suspension”, Colloid Surfaces, 18(2-4), 175–188 (1986).
57.朱美玲,“應用數位影像技術於廢水懸浮固體辨識與沉降特性分析之研究”,國立聯合大學環境與安全衛生工程學系碩士論文,苗栗(2006)。
58.鄭文伯、高瑜苹和余瑞芳,“利用濁度量測值之變異性來推估膠凝過程膠羽顆粒成長趨勢之系統與方法”,中華民國專利96119832 (2007)。
59.吳如雅,“非接觸式光學監測混凝系統技術之發展”,國立中央大學環境工程所碩士論文,桃園(2008)。
60.J. Gregory,“Turbidity fluctuations in flowing suspensions”, Journal of Colloid Interface and Science, 105(2), 357–371 (1985).
61.T.O. Kayode and J. Gregory,“A new technique for monitoring alum sludge conditioning”, Water Research, 22(1), 85–90(1988).
62.J. Eisenlauer and D. Horn,“Fiber-optic sensor technique for flocculant dose control in flowing suspension”, Colloid and Surfaces, 14(1), 121–134 (1985).
63.J. Eisenlauer and D. Horn,“Fiber-optic on-line flocculant dose control in water treatment operations”, Colloid and Surfaces, 25(2-4), 111–129 (1987).
64.Y. Matsui and N. Tambo,“Online floc size evaluation by photometric dispersion analyzer”, Water Supply, 9, 71–78, (1991).
65.T. Ohto, Y. Zaitsu, Y. Matsui, and N. Tambo, “Advances in photometric dispersion analyzer with dual wavelength light”, Water Science & Technology, 27(11), 257–260 (1993).
66.Y. Matsui, N. Tambo, T. Ohto, and Y. Zaitsu,“Dual wavelength photometric dispersion analysis of coagulation and flocculation”, Water Science & Technology, 27(11), 153–165 (1993).
67.H. W. Ching, M. Elimelech, and J.G. Hering,“Dynamic of coagulation of clay particles with aluminum sulfate”, Journal Environmental Engineering, 120(1), 169–189 (1994).
68.H.W. Ching, T.S. Tanaka, and M. Elimelech,“Dynamic of coagulation of kaolin particles with ferric chloride”, Water Research, 28(3), 559–569 (1994).
69.陳國聲,“光纖技術監測淨水膠凝行為之研究”,國立交通大學環境工程研究所碩士論文,1994。
70.甘其銓,“淨水場濁度去除效能評估及混凝監測之研究—以豐原淨水場為例”,國立交通大學環境工程研究所碩士論文,新竹(1997)。
71.T. Li, Z. Zhu, D. Wang, C. Yao, and H. Tang,“The strength and fractal dimension characteristic of alum-kaolin floc”, Mineral Processing, 82(1), 23–29 (2007).
72.高瑜苹,“以光學式濁度計探討不同混凝劑對含藻人工原水處理效果之研究”,國立聯合大學環境與衛生安全工程所碩士論文,苗栗(2007)。
73.W. P. Cheng, Y. J. Hsieh, R. F. Yu, Y. W. Huang, S. Y. Wu, and S. M. Chen,“Characterizing polyaluminum chloride (PACl) coagulation floc using an on-line continuous turbidity monitoring system”, Journal of the Taiwan Institute of Chemical Engineers, 41(5), 547–552 (2010).
74.W. P. Cheng, Y. P. Kao, and R. F. Yu,“A novel method for on-line evaluation of floc size in coagulation process”, Water Research, 42(10-11), 2691–2697 (2008).
75.謝盈如,“以濁度線上連續監測系統探討不同混凝劑之混凝膠羽特性”,國立聯合大學環境與衛生安全工程所碩士論文,苗栗(2009)。
76.M.A. Yukselen and J. Gregory,“The reversibility of floc breakage”, International Journal of Mineral Processing, 73(2-4), 251–259 (2004).
77.張仁能,“以濁度線上連續監測系統應用於淨水廠混凝效率之研究”,國立聯合大學環境與衛生安全工程所碩士論文,苗栗(2010)。
78.朱美玲,“應用數位影像技術於廢水懸浮固體辨識與沉降特性分析之研究”,國立聯合大學環境與衛生安全工程所碩士論文,苗栗(2010)。
79.R. F. Yu, H. W. Chen, W. P. Cheng, and M. L. Chu, “Simultaneously monitoring the particle size distribution, morphology and suspended solids concentration in wastewater applying digital image analysis (DIA)”, Environ Monit Assess, 148(1-4), 19–26 (2009).
80.劉倚汎,“以光學影像連續監測銅廢水化學沉降之技術發展”,國立中央大學環境工程研究所碩士論文,桃園(2009)。
81.賴虹任,“光學影像連續監測高嶺土模擬水樣及原水的控制邏輯”,國立中央大學環境工程研究所碩士論文,桃園(2010)。
82.陳映慈,“膠羽影像色譜分析技術監測混凝程序之開發-以地表水為例”,國立中央大學環境工程研究所碩士論文,桃園(2012)。
83.R. L. Droste, Theory and practice of water and wastewater treatment, John Wiley&Sons Inc, 1996.
84.A.B. Menar and D. Jenkins,“The fate of phosphorus in waste water treatmentprocesses: The enhanced removal of phosphate by activated sludge”, Proc. 24th Ind.Waste Treat. Conf., Purdue Univ. Lafayette, Indiana (1969).
85.M. J. J. M. Van Kemenade and P. L. De Bruyn,“A kinetic study of precipitation from supersaturated calcium phosphate solutions”, Journal of Colloid and Interface Science, 118(2), 564–585 (1987).
86.D.G. Schmidt and P. Both,“Studies on the precipitation of calcium phosphate. I. Experiments in the pH range 5.3 to 6.8 at 25 °C and 50 °C in the absence of additives”, Netherlands Milk and Dairy Journal, 41(2), 105–119 (1987).
87.I. Joko,“Phosphorus removal from wastewater by the crystallization method”, Water Science & Technology, 17, 121–132 (1984).
88.M.S. Tung,“Calcium phosphates: structure, composition, solubility, and stability, in:Amjad Z. (Ed.), Calcium phosphates in biological and industrial systems”, Kluwer Academic Publishers, Norwell, Massachusetts, pp.1–19 (1998).
89.D. Jenkins, J.F. Ferguson, and A.B. Menar, “Chemical processes for phosphate removal”, Water Research, 5, 369-389 (1971).
90.R. Tilly, “Colour and the optical properties of materials”, WILEY, UK, pp.110–111 (2000).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明