博碩士論文 983206012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.231.228.109
姓名 陳月詩(Yue-shih Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究
(The establishment of PM2.5 air quality standard in Taiwan.)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化
★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 懸浮微粒氣動直徑小於或等於2.5 μm (PM2.5)容易進入人體呼吸系統,引起發炎或氣喘造成呼吸系統疾病,對於人體健康影響甚大。目前,世界上各主要國家和組織已陸續制訂PM2.5空氣品質標準以保護公眾健康,我國順應世界潮流也即將公告PM2.5空氣品質標準草案。本文彙整各主要國家和組織訂定標準的程序以及評估標準符合度的方法,檢討台灣現行懸浮微粒空氣品質標準及相關法規,利用2006-2010年環保署PM2.5空氣品質監測數據解析台灣目前空氣品質,並提出台灣未來PM2.5空氣品質標準及評估標準符合度方法。
研究結果顯示,台灣PM2.5濃度呈現由北向南逐漸增加的特徵,春、夏、秋、冬四季各空品區PM2.5連續監測月平均濃度值範圍介於19-50、13-27、15-50、16-64 µg m-3,各空品區逐月累積降雨量變化與PM2.5濃度變化呈現相反趨勢,顯示降雨對PM2.5濃度有重大影響。受東北季風影響期間,大陸冷高壓事件日與沙塵事件日PM2.5平均濃度在北台灣萬里測站為44 µg m-3,平常日為23 µg m-3,從差值推演,東北季風影響期間境外傳輸的污染濃度值約為21 µg m-3,事件日PM2.5 24小時濃度為平常日的1.9倍。仿照美國空品標準評估台灣2008-2010年空品監測站PM2.5 24小時監測濃度的標準符合度時,發現即使是選擇較寬鬆的監測數據累積頻率分布第90%濃度來對應,仍有高達86.4%直轄市、縣(市)和91.7%測站不符合美國空品標準。不過,由於評估美國空品標準採用的標準檢測方法(Federal Reference Method, FRM)獲得的PM2.5檢測濃度低於空品站監測濃度,將空品站監測濃度轉換成等似FRM檢測濃度後,再選擇監測數據累積頻率分布第90%濃度對應評估時,會有大約半數的監測站(51.7%)與縣市(50%)符合美國空品標準。顯示訂定PM2.5空品標準,需同時訂定評估法規符合度的檢測方法和監測數據累積頻率分布百分比對應濃度。
綜合各項因素,本文建議台灣環保署未來參照美國訂定的PM2.5 24小時標準值35 µg m-3與年平均值15 µg m-3作為台灣初期的空氣品質標準值;監測方法以美國FRM檢測方法進行PM2.5濃度檢測,採樣頻率為每三天進行一次監測。對於PM2.5 24小時標準值符合度的評估,建議初期先採用監測數據累積頻率分布第90%濃度來對應,五年後再檢討提升符合度評估為監測數據累積頻率分布第98%濃度的可能性,這種方式可宣示空氣品質標準檢討機制的存在和提供各直轄市、縣(市)當局努力改善PM2.5空氣品質的空間。
摘要(英) Suspended particles with aerodynamic diameter less than or equal to 2.5 μm (PM2.5) are inhalable to human respiratory system to cause lung inflammation and/or asthma and thus cast a great impact on human health. At the present stage, several world’s leading countries and organizations already promulgated their PM2.5 air quality (AQ) standards for the protection of public health. A draft of PM2.5 AQ standard will also be promulgated in Taiwan recently. This study collected the procedure for setting up PM2.5 standards and compliance evaluation methods from leading countries and organizations, reviewed current Taiwan particulate AQ standards and related regulations, analyzed Taiwan’s AQ from PM2.5 AQ monitoring data during 2006-2010, and proposed future Taiwan’s PM2.5 AQ standard and compliance evaluation method.
The results show that Taiwan’s PM2.5 concentrations are characterized with an increasing trend from north to south. The monthly PM2.5 averages for spring, summer, fall, and winter in each AQ district ranged from 19-50, 13-27, 15-50, and 16-64 µg m-3, respectively. PM2.5 concentrations are varied inversely with monthly accumulated rainfalls in each AQ district. It indicates a significant effect from rainfalls on PM2.5 concentrations. Under the prevailing northeast monsoon, the PM2.5 average affected by transboundary pollution transport was around 21 µg m-3 deduced from the difference between 44 µg m-3 during continental High and dust transport events and 23 µg m-3 during normal days at the Wan-Li site. This shows PM2.5 24-h average for event days is 1.9-fold over normal days. Following the U.S. AQ standard to evaluate standard compliance for Taiwan’s PM2.5 24-h concentrations during 2008-2010, 86.4% of cities or counties and 91.7% of monitoring sites failed to comply with the U.S. standard even adopting a less stringent 90th percentile of cumulative frequency distribution. However, considering the measurements from the U.S. Federal Reference Method (FRM) coupling with the compliance evaluation of the U.S. AQ standard were substantially lower than the continuous monitoring levels, conversions from continuous monitoring level to FRM equivalence were conducted. There are about half of the monitoring sites (51.7%) and cities or counties (50%) complied with the U.S. AQ standard when the less stringent 90th percentile of cumulative frequency distribution is chosen for the evaluation again. It implies that the measurement method for compliance evaluation and the percentile of cumulative frequency distribution from monitoring data need to be set up simultaneously in addition to the establishment of a PM2.5 AQ standard.
In summary, this study suggests Taiwan EPA setting up 35 µg m-3 for PM2.5 24-h standard and 15 µg m-3 for annual standard in reference to the U.S. AQ standard initially. And the measurement method for compliance evaluation is through the usage of the U.S. FRM with an operation on a one-in-three day schedule. For PM2.5 24-h standard compliance evaluation, the 90th percentile of cumulative frequency distribution is recommended to choose initially and possibly raised to the 98th percentile five years later after a review process. This policy not only declares a review mechanism for AQ standard but also provides the authorities of cities and counties allowance for improving their PM2.5 AQ.
關鍵字(中) ★ 空氣品質標準
★ PM2.5空氣品質標準符合度評估
★ PM2.5空氣品質標準建置
★ 細懸浮微粒(PM2.5)
關鍵字(英) ★ Compliance evaluation for PM2.5 air quality stan
★ Air quality standard
★ Establishment of PM2.5 air quality standard
★ Fine suspended particles (PM2.5)
論文目次 摘要.......................................................I
Abstract.................................................III
致謝.......................................................V
目錄......................................................VI
圖目錄....................................................IX
表目錄...................................................XII
第一章、前言...............................................1
1.1 研究緣起..............................................1
1.2 研究目的..............................................2
第二章、文獻回顧...........................................3
2.1 細懸浮微粒(PM2.5)氣膠特性.............................3
2.1.1 細懸浮微粒(PM2.5)氣膠形成來源........................3
2.1.2 台灣各空氣品質管制區細懸浮微粒(PM2.5)各行業排放源比例.........................................................4
2.1.3 細懸浮微粒(PM2.5)時間與空間濃度分布變化特性..........7
2.1.4 細懸浮微粒(PM2.5)對人體健康的危害....................8
2.2 美國空氣品質標準.....................................10
2.2.1 美國空氣品質標準的建置程序..........................12
2.2.2 美國歷年微粒空氣品質標準的修訂......................15
2.2.3美國懸浮微粒(PM10)24小時標準值符合度評估方法.........18
2.2.4美國細懸浮微粒(PM2.5)年平均標準值符合度評估方法......19
2.2.5美國細懸浮微粒(PM2.5) 24小時標準值符合度評估方法.....21
2.3 歐盟空氣品質標準.....................................24
2.3.1 歐盟空氣品質標準的建置程序與考量要點................26
2.3.2 歐盟細懸浮微粒(PM2.5)空氣品質標準相關法規的研訂.....28
2.4 世界衛生組織(WHO)空氣品質標準........................33
2.4.1 建立細懸浮微粒(PM2.5)空氣品質指標值考量的健康因素...35
2.4.2 WHO提供達成細懸浮微粒(PM2.5)空氣品質指標值的階段性目標........................................................37
2.5 台灣空氣品質標準.....................................39
2.5.1 符合空氣品質標準的判定與空氣污染防制區的劃定........41
2.5.2 空氣污染物容許增量限值..............................44
2.5.3 環保署細懸浮微粒(PM2.5)監測起源與近年相關措施.......46
第三章、研究方法..........................................47
3.1 研究架構及流程.......................................47
3.2 我國空氣品質管制區與空氣品質監測站的劃分.............49
3.3 文獻蒐集與數值解析方法...............................52
3.3.1 環境細懸浮微粒空氣品質評估..........................52
3.3.2 各國家細懸浮微粒空氣品質標準的符合度評估方法........60
第四章、結果與討論........................................63
4.1 現行懸浮微粒(PM10)空氣品質標準的適宜性...............63
4.1.1 五都形成對懸浮微粒(PM10)空氣品質標準符合度的影響....63
4.1.2 懸浮微粒(PM10)法規的容許增量限值合理性探討與修正建議........................................................66
4.1.3 探討總懸浮微粒(TSP)於法規及容許增量限值子法的適用性.73
4.2 世界各主要國家制訂微粒空氣品質標準的寬嚴程度.........74
4.2.1 台灣與美國、歐盟及WHO制訂懸浮微粒(PM10)24小時空氣品質標準值寬嚴比較............................................74
4.2.2 各主要國家訂定細懸浮微粒(PM2.5)空氣品質標準值(指標值)時間序列..................................................77
4.2.3 美國、WHO與日本制訂細懸浮微粒(PM2.5)24小時限值寬嚴比較........................................................79
4.2.4 美國、歐盟、WHO與日本制訂細懸浮微粒(PM2.5)年平均標準值寬嚴比較..................................................81
4.3 細懸浮微粒(PM2.5)環境空氣品質評估....................84
4.3.1 歷年細懸浮微粒(PM2.5)濃度變化趨勢...................84
4.3.2 細懸浮微粒(PM2.5)季節性濃度變化.....................93
4.3.3 東北季風期間細懸浮微粒(PM2.5)受境外傳輸的影響......101
4.4 細懸浮微粒(PM2.5)環境空氣品質標準及法規符合度評估...104
4.4.1 以懸浮微粒(PM10)法規空氣品質背景值計算方式評估台灣細懸浮微粒(PM2.5) 24小時監測值...............................104
4.4.2 以連續三年監測數據累積頻率分布不同百分點對應24小時細懸浮微粒(PM2.5)監測濃度值評估台灣各監測站PM2.5空氣品質對美國標準符合度.................................................109
4.4.3 以連續三年監測數據累積頻率分布不同百分點對應的24小時細懸浮微粒(PM2.5)監測濃度值評估台灣各直轄市、縣(市)細懸浮微粒(PM2.5)空氣品質對美國標準符合度..........................113
4.4.4 以單年監測數據累積頻率分布不同百分點對應的24小時細懸浮微粒(PM2.5)監測濃度評估台灣細懸浮微粒(PM2.5)空氣品質對WHO與日本標準符合度...........................................120
4.4.5 以不同採計年數評估台灣細懸浮微粒(PM2.5)年平均空氣品質概況.....................................................130
4.5 細懸浮微粒( PM2.5 )空氣品質標準的建置...............137
4.5.1 PM2.5空氣品質標準的建置程序........................137
4.5.2 PM2.5空品標準可行性評估建議........................145
第五章、結論與建議.......................................147
5.1 結論................................................147
5.2 建議................................................150
第六章、參考文獻.........................................151
附錄1 2007年空氣品質區各行業PM2.5污染源管制後排放量與貢獻百分比.....................................................157
附錄2 2006-2010年沙塵事件日整理.........................164
附錄3 訂定修正廢止法規命令標準作業流程說明(99.06修正)..166
附錄4 中央行政機關法制作業應注意事項.....................172
附錄5 歷年來(2006-2010年)台灣一般空氣品質監測站PM2.5 24小時濃度(y)值與時間(t)線性趨勢變化(y=mt+b)...................174
附錄6 歷年來(2006-2010年)台灣一般空氣品質監測站PM2.5年平均濃度(y)值與時間(t)線性趨勢變化(y=mt+b)...................176
附錄7 口試委員意見答覆..................................178
參考文獻 Bowerman, B.L., O’Connel, R.T., Koehler, A.B., 2005. Forecasting, Time Series and Regression: An Applied Approach. Fourth Edition, Thomson Learning, Inc. Belmont, California, USA.
Broday, D.M., Georgopoulos, P.G., 2001. Growth and Deposition of Hygroscopic Particulate Matter in the Human Lungs. Aerosol Science and Technology 34, 144-159 C.
Brook, R.D., Franklin. B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., 2004. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 109(21), 2655-2671.
Brunekreef, B., Maynard, R.L., 2008. A note on the 2008 EU standards for particulate matter. Atmospheric Environment 42, 6425-6430.
Chang, S.Y., Lee, C.T., Chou, C.C.K., Liu, S.C., Wen, T.X., 2007. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan. Atmospheric Environment 41, 1936-1949.
Chang, S.C., Chou, C.C.K., Chen, W.N., Lee, C.T., 2010. Asian dust and pollution transport-A comprehensive observation in the downwind Taiwan in 2006. Atmospheric Research 95, 19-31.
Chen, S.J., Hsieh, L.T., Kao, M.J., Lin, W.Y., Huang, K.L., Lin, C.C., 2004. Characteristics of particles sampled in southern Taiwan during the Asian dust storm periods in 2000 and 2001. Atmospheric Environment 38, 5925-5934.
Cheng, M.T., Lin, Y.C., Chio, C.P., Wang, C.F., Kuo, C.Y., 2005. Characteristics of aerosols collected in central Taiwan during an Asian dust event in spring 2000. Chemosphere 61, 1439-1450.
Chou, C.C.K., Lee, C.T., Yuan, C.S., Hsu, W.C., Lin, C.Y., Hsu, S.C., Liu, S.C., 2008. Implications of the chemical transformation of Asian outflow aerosols for the long-range transport of inorganic nitrogen species. Atmospheric Environment 42, 7508-7519.
Dockery, D.W., Pope, C.A.3rd., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., Speizer, F.E., 1993. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329, 1753-1759.
Fang, G.C., Lee, S.C., Lee, W.J., Cheng, Y., Lin, I.C., 2007. Characteristics of carbonaceous aerosol at Taichung harbor, Taiwan during summer and autumn period of 2005. Environmental Monitoring and Assessment 131, 501-508.
Fang, G.C., Wu, Y.S., Lin, J.B., Lin, C.K., Rau, J.Y., Huang, S.H., 2006. Characterization of atmospheric particulate and metallic elements at Taichung Harbor near Taiwan Strait during 2004-2005. Chemosphere 63, 1912-1923.
Gardner, S.Y., James, R.L., Costa, D.L., 2000. Oil fly ash-induced elevation of plasma fibrinogen levels in rats. Toxicological Sciences 56, 175-180.
Health Effects Institute. 2000. Reanalysis of the Harvard Six-Cities study and the American Cancer Society study of particulate air pollution and mortality. A special report of the Institute’s Particle Epidemiology reanalysis Project. Cambridge, MA, Health Effects Institute.
Huang, S.L., Hsu, M.K., Chan, C.C., 2003. Effects of submicrometer particle compositionson cytokine production and lipid peroxidation of human bronchial epithelial cells. Environmental Health Perspectives111, 478-82.
ICRP, International Commission on Radiological Protection. 1994. Human respiratory tract model for radiological protection. Publication 66, Annals of ICRP, Pergamon, London, UK.
Jerrett, M., 2005. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 16, 727-736.
Junker, C., Wang, J.L., Lee, C.T., 2009. Evaluation of the effect of long-range transport of air pollutants on coastal atmospheric monitoring sites in and around Taiwan. Atmospheric Environment 43, 3374-3384.
Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le, T.A., Monopolis, Y., Rossi, G., Zmirou, D., Ballester, F., Boumghar, A., Anderson, H.R., Wojtyniak, B., Paldy, A., Braunstein, R., Pekkanen, J., Schindler, C., Schwartz, J., 2001. Confounding and effect modi-fication in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology 12, 521-531.
Laden, F., Schwartz, J., Speizer, F.E., Dockery, D.W., 2006. Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard six cities study. American Journal of Respiratory and Critical Care Medicine 173,667-672.
Lee, C.T., Chuang, M.T., Chan, C.C., Cheng, T.J., Huang, S.L., 2006. Aerosol characteristics from the Taiwan aerosol supersite in the Asian yellow-dust periods of 2002. Atmospheric Environment 40, 3409-3418.
Mao, I.F., Chen, C.N., Lin, Y.C., Chen, M.L., 2007. Airborne particle PM2.5/PM10 mass distribution and particle-bound PAH concentrations near a medical waste incinerator. Atmospheric Environment 41, 2467-2475.
Massachusetts SIP Steering Committee. 2006. Proposed revision of EPA PM Standards, Boston, MA.
Oberdorster, G., Finkelstein, J., Ferin, J., Godleski, J.J., Chang, L.Y., Gelein,R.,Johnson, C., Crapo, J.D., 1996. Ultrafine particles as a potential environmental hazard. Studies with model particles. Chest 109, 68S-69S.
Pope, C.A.3rd., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston,G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association 287, 1132-1141.
Pope, C.A.3rd., Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, F.E., Heath, C.W.J., 1995. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. American Journal of Respiratory and Critical Care Medicine 151, 669-674.
Samet, J.M., Zeger, S.L., Dominici, F., Curriero, F., Coursac, I., Dockery, D.W., Schwartz, J., Zanobetti, A., 2000. The National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and mortality from air pollution in the United States. Research Reports of the Health Effects Institute 94, 5-70.
Schroeter, J.D., Musante, C.J., Hwang, D., Burton, R., Guilmette, R., Martonen, T.B., 2001. Hygroscopic Growth and Deposition of Inhaled Secondary Cigarette Smoke in Human Nasal Pathways. Aerosol Science and Technology 34, 137-143.
Schwartz, J., 2006. Assessing confounding, effect modification, and thresholds in the association between ambient particles and daily deaths. Environmental Health Perspectives108, 563-568.
Stanifor, T.J., Kunkel, S.L., Basha, M.A., Chensue, S.W., Lynch, III, J.P., Toews, G.B.,Westwick, J., Strieter, R.M., 1990. Interleukin-8 gene expression by pulmonary epithelial cell line. A model for cytokine networks in the lung. J ClinInvest 86, 1945-1953.
Strieter, R.M., Kunkel, S.L., Bone, R.C., 1993. Role of tumor necrosis factor-α in disease and inflammation. Critical Care Medicine21, S447-463.
The European Parliament and The Council of The European Union Directive on ambient air quality and cleaner air for Europe. 2008/50/EC of The European Parliament and of The Council of 21 May 2008.
The United States Environmental Protection Agency (USEPA). 1997. Revised requirements for designation of reference and equivalent methids for PM2.5 and ambient air quality surveillance for Particulate Matter (Code of Federal Regulations 40 Parts 53 and 58); Federal Register, Vol. 62, No. 138.
The United States Environmental Protection Agency (USEPA), 2006. National ambient air quality standards for particulate matter:Final rule. (Code of Federal Regulations 40 Parts 50); Federal Register, Vol. 71, No. 200.
Tsai, Y.I., Chen, C.L., 2006.Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.
Tsai, Y.I., Kuo, S.C., 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.
Whitby, K.T., Svedrvp, G.M., 1980. California aerosol:Their Physical and Chemical Characteristics. Advanced Environment Science Technology 10, 477.
Wilson, R., Spengler, J.D., 1996. Particle in our air: Concentrations and health effects. Harvard University Press, New York.
World Health Organization. 2005. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide, Sulfur Dioxide, Global Update 2005. Summary of Risk Assessment.
World Health Organization. 2004. Assessing the environmental burden of disease at national and local levels. Environmental Burden of Disease Series, NO.5.
朱宏勳,2004。長程傳輸對台北大氣氣膠特性的影響。國立中央大學環境工程研究所碩士論文。
王之群,2006。台北都會區近三年連續監測及事件日氣膠特性。國立中央大學環境工程研究所碩士論文。
沈士翔,2006。綜觀天氣及不同氣流軌跡影響下的北台灣氣膠特性。國立中央大學環境工程研究所碩士論文。
林琴軒,2010。北部氣膠超級測站近七年氣膠特性變化探討。國立中央大學環境工程研究所碩士論文。
鄭尊仁、李崇德、周崇光、吳焜裕、陳保中、郭育良、吳章甫、林先和、陳主智、何文照、趙馨,2010。空氣品質標準檢討評估、細懸浮微粒空氣品質標準研訂計畫,環保署/國科會空污防制科研合作計畫,NSC 99-EPA-M-001-001,民國100年8月23日。
李崇德、周崇光、翁國豪,2009。細懸浮微粒(PM2.5)空氣品質標準訂定建議及學理分析研究,子計畫一、細懸浮微粒質量濃度及化學組成的時空分布與變化趨勢,環保署/國科會空污防制科研合作計畫,NSC 98-EPA-M-002-001,民國99年5月28日。
李崇德、吳義林、周崇光、張士昱、溫志雄,2011。細懸浮微粒(PM2.5)質量濃度與成分人工採樣分析先驅計畫,期中報告,EPA-100-FA11-03-A088,民國100年6月29日。
日本環境空氣品質標準http://www.env.go.jp/en/air/aq/aq.html
美國環境空氣品質標準http://www.epa.gov/ttn/naaqs/pm/pm25_index.html
行政院環保署空氣品質標準http://www.epa.gov.tw/
加拿大環境空氣品質標準http://www.ec.gc.ca/default.asp?lang=en
英國環境空氣品質標準http://www.environmental-protection.org.uk/
澳洲環境空氣品質標準http://www.environment.gov.au/atmosphere/airquality/standards.html
指導教授 李崇德(Chung-te Lee) 審核日期 2011-12-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明