博碩士論文 983206027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.136.97.64
姓名 張家宏(JIA HONG CHANG)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
(Aerosol characteristics at Son La Height in Vietnam and at Mountain Lulin in Taiwan during biomass burning or non-biomass burning period in 2011)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2011年3月在越南山羅(海拔682公尺)及台灣鹿林山(海拔2,862公尺)以採集PM10及PM2.5濾紙氣膠進行化學分析,目的是瞭解近生質燃燒源及生質燃燒氣團經過長程傳輸後氣膠特性。。
結果發現越南山羅觀測前期(3月18至21日)同時受到生質燃燒和傳輸沙塵影響,PM10-2.5及PM2.5氣膠成分以碳成分為主,且PM10-2.5及PM2.5氣膠質量濃度高於PM2.5;觀測後期(3月22至31日)則同時受到生質燃燒和中國南方污染傳輸影響,水溶性離子比例上升並主導氣膠質量,特別是SO42-佔PM2.5質量的改變最為明顯。觀測後期C3/C4比值(0.40)略高於觀測前期(0.34),顯示中國南方氣膠成分較溶於水且受到光化氧化程度較高。觀測期間,生質燃燒指標物nss-K+與levoglucosan、Char-EC/Soot-EC相關性(R2>0.5)良好,印證受到生質燃燒的影響。
受到生質燃燒傳輸氣流影響時,鹿林山PM2.5氣膠質量濃度增加為4.1倍,PM2.5總碳濃度增加為3.8倍,左旋葡萄糖增加為4.3倍,PM2.5水溶性離子增加3.1倍,其中以nss-K+增加5.4倍最多,顯示左旋葡萄糖及nss-K+都是生質燃燒氣膠指標物。越南山羅及鹿林山受生質燃燒影響時,有氨氣不足的現象,鹿林山未受生質燃燒傳影響時,則是趨近完全中和,顯示生質燃燒煙團氣膠較偏酸性。
越南山羅觀測前期PM2.5氣膠在大氣相對濕度60%以上主要的固體結合型態是Oxalic‧2H2O(s),觀測後期則是(NH4)2SO4和(NH4)3(H)(SO4)2,鹿林山PM2.5氣膠無論是否受到生質燃燒傳輸氣流影響,在大氣相對濕度60%以上主要的固體結合型態都是(NH4)2SO4。這些不同化合物對太陽輻射衰減程度也會有所差別,在評估環境效應有重要的意義。
氣膠含水量可表示在高濕度大氣下氣膠吸濕粒徑增大能力,因而對太陽輻射衰減程度評估也是重要因子。本文彙整2008年至2011年在鹿林山量測的氣膠含水量,多元迴歸分析顯示PM10氣膠含水量無論在BB及NBB時期都選SO42-及WSOC-HULIS_C (代表WSOC扣減掉重要疏水性成分)為重要預測因子,PM2.5氣膠含水量則無論在任何時期最主要的影響因子都是NH4+,顯示氣膠成分對對氣膠含水量的貢獻取決於物種和濃度。
摘要(英) This work collected filter-based PM10 and PM2.5 samples at Son La (682 m a.s.l., Vietnam) in March 2011 and Mt. Lulin (2,862 m a.s.l., Taiwan) from March to April 2011 for analyzing their chemical compositions. The aim of this work is to understand aerosol characteristics from near-source biomass burning (BB) and BB plume after long-range transport.
The results showed that Son La aerosol was simultaneously influenced by BB and transported dust in the front observation period to result in the dominance of carbonaceous content both in PM10-2.5 and PM2.5 as well as higher PM10-2.5 mass than PM2.5 from March 18 to 21, 2011. In contrast, the proportion of water-soluble ions was increased to dominate aerosol chemical speciation in the rear observation period from March 22 to 31, 2011, especially for the apparent change of SO42- over PM2.5 mass, which was due to the influence of BB coupling with the pollution transported from the southern China. The slight greater C3/C4 ratio (0.4) in rear than front (0.34) periods implies aerosol component is inclined to be more water-soluble and with greater degree of photochemical oxidation. The moderate high correlations (R2>0.5) for nss-K+ vs. levoglucosan and Char-EC/Soot-EC, respectively, validate the influence of BB activities during the observation period.
The enhancements of Mt. Lulin PM2.5 mass, total carbon, total ion, levoglucosan, and K+ were 4.1, 3.8, 3.1, 4.3, and 5.4 folds when under the influence of BB plume transport. This fact identifies aerosol BB tracers from transported airmasses. Ammonia deficient was found for Son La and Mt. Lulin aerosols under the influence of BB; however, aerosol was almost completely neutralized when Mt. Lulin was not affected by the transported BB plume. This indicates that BB plume aerosol tends to be acidic.
For Son La aerosol, PM2.5 copound form was Oxalic‧2H2O(s) when atmospheric relative humidity (RH) exceeded 60% in the front period and were (NH4)2SO4 and (NH4)3(H)(SO4)2 in the rear period. For comparison, the copound form of Mt. Luin PM2.5 was always (NH4)2SO4 regardless of the influences of BB. Different compound forms of aerosol exert deviations in the degradation of solar radiation and thus important in the assessment of environmental effect.
Aerosol water content is capable of representlin hygroscopic growth under high atmospheric RH and consequently plays an important role for evaluating solar radiation attenuation. This work compiled aerosol water content measured at Mt. Luin from 2008 to 2011. Linear regression analyses show that SO42- and WSOC-HULIS_C are chosen as significant predictors for BB and NBB periods in PM10, while NH4+ is considered as the important predictor for all time. The results imply aerosol water content is determined by speciation and concentration.
關鍵字(中) ★ 生質燃燒氣膠
★ 越南山羅氣膠
★ 生質燃燒氣膠長程傳輸
★ 氣膠結合型態
★ 氣膠含水量
關鍵字(英) ★ Biomass burning aerosol
★ Vietnam Son La aerosol
★ Long-range transported biomass burning aerosol
★ Aerosol compound form
★ Aerosol water content
論文目次 摘要..........i
Abstract..........ii
目錄..........iii
圖目錄..........v
表目錄..........viii
一、前言..........1
1.1研究緣起..........1
1.2研究目的..........2
二、文獻回顧..........3
2.1生質燃燒..........3
2.1.1亞洲生質燃燒..........3
2.1.2燃燒源指標..........5
2.2高山氣體與氣膠..........6
2.3越南氣膠特性..........7
2.5大氣氣膠含水特性..........10
2.5.1無機氣膠含水特性..........10
2.5.2有機氣膠含水特性..........11
2.5.3氣膠中和型態與氣膠含水特性..........12
2.6氣膠中和狀況與結合型態..........13
三、實驗方法..........14
3.1研究架構..........14
3.2採樣地點與採樣週期..........15
3.2.1越南山羅..........16
3.2.2鹿林山大氣背景監測站..........18
3.3採樣方法與採樣器..........21
3.3.1採樣儀器..........21
3.3.2儀器與濾紙配置..........24
3.4樣本分析方法..........27
3.4.1氣膠質量濃度分析..........27
3.4.2氣膠含水量分析..........28
3.4.3氣膠水溶性離子分析..........31
3.4.4氣膠碳成分分析..........34
3.4.5氣膠有機成分分析-單醣無水化合物..........36
3.4.6氣膠水可溶有機碳分析..........38
3.4.7似腐植質氣膠分析..........40
3.5氣膠中和探討-【NH4+】meas/【NH4+】calc 計算方式..........42
3.6判別生質燃燒發生的方法..........43
3.6.1美國太空總署(NASA)自然災害網..........43
3.6.2氣流軌跡模式(NOAA HYSPLIT) ..........43
3.6.3觀測期間逆推軌跡分類..........44
四、結果與討論..........48
4.1越南山羅當地氣膠特性..........48
4.1.1 PM10-2.5及PM2.5氣膠濃度質量..........48
4.1.2 PM10-2.5及PM2.5氣膠水溶性離子與揮發性離子濃度..........51
4.1.3氣膠碳成分濃度..........53
4.2鹿林山觀測期間氣膠特性..........59
4.2.1 PM10-2.5及PM2.5氣膠質量濃度..........59
4.2.2 PM10-2.5及PM2.5氣膠水溶性離子與PM2.5氣膠揮發性離子濃度..........61
4.2.3氣膠碳成分濃度..........64
4.3越南氣膠來源判斷..........72
4.4氣流來源類型與氣膠特性的差異..........77
4.4.1各觀測地點氣膠組成比例..........77
4.4.2氣流來源類型與氣膠特性的差異..........82
4.4.3氣膠中和狀況與結合型態..........91
4.5氣膠含水量..........101
4.5.1大氣氣膠含水量與化學成分..........101
4.5.2多元迴歸分析氣膠含水量..........109
4.5.3有機物質對氣膠含水量的影響..........115
五、結論與建議..........118
5.1結論..........118
5.2建議..........120
六、參考文獻..........121
附錄一、口試委員意見回覆..........129
附錄二、2011年密集觀測時期鹿林山氣流逆軌跡..........137
附錄三、2011年越南山羅密集觀測期間氣流逆軌跡..........141
附錄四、2011年越南山羅密集觀測期間CALIPSO衛星資料..........143
參考文獻 Ansari, A. S., Pandis, S. N., 1999. Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmospheric Environment 33, 745-757.
Asa-Awuku, A., Sullivan, A. P., Hennigan, C. J., Weber, R. J., Nenes, A., 2008.Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmospheric Chemistry and Physics 8, 799-812.
Babu, S.S., Chaubey, J.P., Moorthy, K.K., Gogoi, M.M., Kompalli, S.K., Sreekanth, V., Bagare, S.P., Bhatt, B.C., Gaur, V.K., Prabhu, T.P. and Singh, N.S., 2011. High altitude (~4520 m amsl) measurements of black carbon aerosols over western trans-Himalayas: Seasonal heterogeneity and source apportionment. JOURNAL OF GEOPHYSICAL RESEARCH 116, doi:10.1029/2011JD016722.
Batmunkh, T., Kim, Y.J., Lee, K.Y., Cayetano, M.G., Jung, J.S., Kim, S.Y., Kim, K.C., Lee, S.J., Kim, J.S., Chang, L.S. and An, J.Y., 2011. Time- Resolved Measurements of PM2.5 CarbonaceousAerosols at Gosan, Korea. Air & Waste Manage. Assoc. 61:1174–1182, doi: 10.1080/10473289.2011.609761.
Brosset, C., 1978. Water-soluble sulphur compounds in aerosols. Atmospheric Environment 12, 25-38.
Cachier, H., Jacob, J., Bremond, M., Lacaux, J., Gaudichet, A., Baudet, J., 1991. Bimoass burning in a savanna region of the Ivory Coast. Atmospheric Climatic and Biospheric Implication, 174-180.
Carrico, C.M., Petters, M.D., Kreidenweis, S.M., Sullivan, A.P., McMeeking, G.R., Levin, E.J.T., Engling, G., Malm, W.C., and Collett Jr., J.L., 2010. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmos. Chem. Phys., 10, 5165–5178.
Chang, S. Y., Lee, C. T., 2002. Applying GC-TCD to investigate the hygroscopic characteristics of mixed aerosols. Atmospheric Environment 36, 1521-1530.
Cheng, S.H., Yang, L.X., Zhou, X.H., Xue, L.K., Gao, X.M., Zhou, Y., Wang, W.X., 2011. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment 45, 4631-4640.
Chi, K. H., Lin, C. Y., Yang, C. F. O., Wang, J. L., Lin, N. H., Sheu, G. R., and Lee, C. T.: PCDD/F measurement at a high-altitude station in Central Taiwan: Evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event. Environmental Science & Technology 44, 2954-2960.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., Purcell, R. G., 1993. The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmospheric Environment 27, 1185-1201.
Cohen, D.D., Crawford, J., Stelcer, E., Bac, V.T., 2010. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmospheric Environment 44, 320–328.
Colberg, C. A., Luo, B. P., Wernli, H., Koop, T., Peter, T., 2003. A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles. Atmospheric Chemistry and Physics 3, 909-924.
Chuang, M.-T., Chou, C. C.-K., Sopajareepom, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y. C., Lee, C.-T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha Experiment,” Atmospheric Environment (in press).
Clegg, S. L., Seinfeld, J. H. and Brimblecombe, P., 2001. Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. J. Aerosol Sci. 32, 713-738.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282.
Draxler, R.R., Rolph, G.D., 2010. (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD.
Gao, S., Hegg, D.A., Hobbs, P.V., Kirchstetter, T.W., Magi, B.I., Sadilek, M., 2003.Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution, Journal of Geophysical Research-Atmospheres 108, D13, 8491, doi:10.1029/JD002324.
Gierlus, K.M., Laskina, O., Abernathy, T.L., Grassian, V.H., 2012. Laboratory study of the effect of oxalic acid on the cloud condensation nuclei
activity of mineral dust aerosol. Atmospheric Environment 46, 125-130.
Hand, J.L., Ames, R.B., Kreidenweis, S.M., Day, D.E., Malm, W.C., 2000. Estimates of Particle Hygroscopicity during the Southeastern Aerosol and Visibility Study. Air & Waste Manage. Assoc. 50:677-685.
Han, Y.M., Han, Z.W., Cao, J.J., Chow, J.C., Watson, J.G., An, Z.S., Liu, S.X., Zhang, R.J., 2008. Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance. Atmospheric Environment 42, 2405–2414.
Hien, P.D., Bac, V.T., Thinh, N.T.H., 2004. PMF receptor modelling of fine and coarse PM10 in air masses governing monsoon conditions in Hanoi, northern Vietnam. Atmospheric Environment 38, 189–201.
Hien, T.T., Thanh, L.T., Kameda, T., Takenaka, N., Bandow, H., 2007. Distribution characteristics of polycyclic aromatic hydrocarbons with particle size in urban aerosols at the roadside in Ho Chi Minh City, Vietnam. Atmospheric Environment 41, 1575–1586.
Hegg, D.A., Covert, D.S., Rood, M.J., Hobbs, P.V., 1996. Measurements of aerosol optical properties in marine air. Journal of Geophysical Research 101, 12893-12903.
Jordan, T.B., Seen, A.J., Jacobsen, G.E., 2006. Levoglucosan as an atmospheric tracer for wood smoke. Atmospheric Environment 40, 5316-5321.
Jung, J., Lee, H., Kim Y. J., Liu, X., Zhang, Y., Gu, J., Fan, S., 2009. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. Journal of Environmental Management 90 3231–3244.
Kumar, R., Naja, M., Venkataramani, S., Wild, O., 2010. Variations in surface ozone at Nainital: a high-altitude site in the central Himalayas. J. Geophys. Res. 115. doi:10.1029/2009JD013715.
Lee, C. T., Chang, S. Y., 2002. A GC-TCD method for measuring the liquid water mass of collected aerosols. Atmospheric Environment 36, 1883-1894.
Lee, C.T., Chuang, M.T., Lin, N.H., Wang, J.L., Sheu, G.R. Chang, S.C., Wang, S.H., Huang, H., Chen, H.W., Liu, Y.L., Weng, G.H., Lai, H.Y., Hsu, S.P., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. ATMOSPHERIC ENVIRONMENT 45, 5784-5794.
Lee, C. T., Hsu, W. C., 1998. A novel method to measure aerosol water mass. Journal of Aerosol Science 29, 827-837. Lee, C. T., Hsu, W. C., 2000. The measurement of liquid water mass associated with collected hygroscopic particles. Journal of Aerosol Science 31, 189–197.
Lin, P., Engling, G., Yu., J. Z., 2010. Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmos. Chem. Phys., 10, 6487–6500, doi:10.5194/acp-10-6487-2010.
McMeeking, G.R., Kreidenweis, S.M., Baker, S., Carrico, C.M., Chow, J.C., Collett Jr., J.L., Hao, W.M., Holden, A.S., Kirchstetter, T.W., Malm, W.C., Moosmüller, H., Sullivan, A.P. and Wold, C.E., 2009. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. JOURNAL OF GEOPHYSICAL RESEARCH 114,doi:10.1029/2009JD011836.
Naja, M., Lal, S., Chand, D., 2003. Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6∘N, 72.7∘E, 1680 m asl) in India. Atmos. Environ. 37, 4205-4215.
Niemi, J.V., Saarikoski, S., Aurela, M., Tervahattu, H., Hillamo, R., Westphal, D.L., Aarnio, P., Koskentalo, T., Makkonen, U., Vehkamaki, H., Kulmala, M., 2009. Long-range transport episodes of fine particles in southern Finland during 1999–2007. Atmospheric Environment 43, 1255-1264.
Novakov, T., Andreae, M.O., Gabriel, R., Kirchstetter, T.W., Mayol-Bracero, O.L. and Ramanathan, V., 2000. Origin of carbonaceous aerosols over the tropical Indian Ocean:Biomass burning or fossil fuels? GEOPHYSICAL RESEARCH LETTERS, 4061-4064.
Ou Yang, C.F., Lin, N.H., Sheu, G.R., Lee, C.T., Wang, J.L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Pandey, R., Tyagi, A., 2012. Particulate Matter Emissions From Domestic Biomass Burning in a Rural Tribal Location in the Lower Himalayas in India: Concern Over Climate Change. Small-scale Forestry, doi:10.1007/s11842-011-9177-8.
Perrone, M.G., Larsen, B.R., Ferrero, L., Sangiorgi, G., Gennaro, G.D., Udisti, R., Zangrando, R., Gambaro, A., Bolzacchini, E., 2012. Sources of high PM2.5 concentrations in Milan, Northern Italy: Molecular marker data and CMB modeling. Science of the Total Environment 414, 343–355.
Pio, C.A., Legrand, M., Alves, C.A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencser, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Puxbaum, H., Caseiro, A., Sanchez-Ochoa, A., Kasper-Giebl, A., Claeys, M., Gelencser, A., Legrand, M., Preunkert, S., Pio, C., 2007. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. Journal of Geophysical Research-Atmospheres, doi:10.1029/2006JD008114.
Rees, S.L., Robinson, A.L., Khlystov, A., Stanier, C.O., Pandis, S.N., 2004. Mass balance closure and the Federal Reference Method for PM2.5 in Pittsburgh, Pennsylvania. Atmospheric Environment 38, 3305–3318.
Rehman, I.H., Ahmed, T.P., Praveen, S., Kar, A. and Ramanathan, V., 2011. Black carbon emissions from biomass and fossil fuels in rural India. Atmos. Chem. Phys., 11, 7289–7299, doi:10.5194/acp-11-7289-2011.
Schmidl, C., Marr, I.L., Caseiro, A., Kotianova, P., Berner, A., Bauer, H., Kasper-Giebl, A., Puxbaum, H., 2008. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environment 42, 126-141.
Simoneit, B.R.T., 2002. Biomass burning: a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162.
Song, Y., Chang, D., Liu, B., Miao, W., Zhu, L. and Zhang, Y., 2010. A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009. ENVIRONMENTAL RESEARCH LETTERS, doi:10.1088/1748-9326/5/1/014014.
Stohl, A., Berg, T., Burkhart, J.F., Fjaraa, A.M., Forster, C., Herber, A., Hov, O., Lunder, C., McMillan, W.W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Strom, J., Torseth, K., Treffeisen, R., Virkkunen, K., Yttri, K.E., 2007. Arctic smoke-record high air pollution levels in the European Arctic due to agricultural fires in eastern Europe in spring 2006. Atmospheric Chemistry and Physics 7, 511-534.
Streets, D.G., Bond, T.C., Carmichael, G.R., Fernandes, S.D., Fu, Q., He, D., Klimont, Z., Nelson, S.M., Tsai, N.Y., Wang, M.Q., Woo, J.-H. and Yarber1. K.F., 2003a. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. JOURNAL OF GEOPHYSICAL RESEARCH, doi:10.1029/2002JD003093.
Streets, D. G., Yarber, K. F., Carmichael, G. R., 2003b. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17, 1099, doi:10.1029/2003GB002040.
Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C. and Prather, K. A., 2009. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys., 9, 3303–3316.
Tanimoto, H., 2009. Increase in springtime tropospheric ozone at a mountainous
site in Japan for the period 1998e2006. Atmos. Environ. 43, 1358e1363.
Tanner, R.L., Leaderer, B.P., Spengler, J.D., 1981. Acidity of atmospheric aerosols. Environmental Science & Technology 15, 150-1153.
Wang, J., Hoffmann, A. A., Park, R. J., Jacob, D. J., Martin, S. T., 2008. Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions. Journal of Geophysical Research 113, D11206, doi: 10.1029/2007JD009367.
Yang L., Yu L. E., 2008. Measurements of Oxalic Acid, Oxalates, Malonic Acid, and Malonates in Atmospheric Particulates. Environ. Sci. Technol. 42, 9268–9275.
Yu, J.Z., Xu, J.X., Yang, J., 2002. Charring characteristics of atmospheric organic particulate matter in thermal analysis, Environment Science & Technology., 36, 754–761.
Zdrahal, Z., Oliveira, J., Vermeylen, R., Claeys, M., Maenhaut, W., 2002. Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environment Science & Technology 36, 747-753.
Zhang, Y., Schauer, J.J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y. and Hao, M., 2008.
Characteristics of Particulate Carbon Emissions from Real-World Chinese Coal Combustion. Environ. Sci. Technol., 42, 5068–5073.
秦若鈺,2004。大氣常見有機物分析及有機/無機混和氣膠含水特性之研究。國立中央大學環境工程研究所碩士論文。
方彥仁,2006。長程傳輸對台灣北端氣膠酸鹼度與污染物演化生成程序的影響。國立中央大學環境工程研究所碩士論文。
余政哲,2010。鹿林山大氣氣膠含水量探討及乾氣膠光學特性。國立中央大學環境工程研究所碩士論文。
張佑嘉,2011。中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性。立中央大學環境工
程研究所碩士論文。
指導教授 李崇德(Chung-Te Lee) 審核日期 2013-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明