博碩士論文 983208004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.119.107.96
姓名 邱建文(Chien-Wen Chiu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測
(Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment)
相關論文
★ 快速鑄造與單/雙蠟注射成型在歧管熔模鑄造中尺寸一致性的比較★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測
★ 低氮氧化物燃燒器與加氫效應定量量測★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析
★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度
★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響★ 近場電紡織研究-與傳統電紡織比較、自組織多根射流暨可排列奈/微米金屬纖維轉印成可撓之透明電極
★ 無震盪式驅動的液體透鏡裝置應用於光束控制與搭配適應性光學系統的增幅能力★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 大面積排列壓電奈米纖維應用於奈米發電機及自供電式形變感測器
★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)★ 微電網電力轉換器基於多種條件下之雙向柔性切換IGBT其熱管理與績效評估
★ 實驗研究密度比效應對紊流火焰速率之影響★ Numerical analysis of a rotary warm forming process for rim thickening of a steel disc plate
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文定量量測氫氣/一氧化碳合成氣於高壓條件下即p = 0.1 ~ 1.0 MPa,之預混層焰和紊焰之燃燒速度(SL和ST),利用風扇擾動式紊流場之大尺度高壓燃燒系統,執行一系列中心引燃往外傳遞之預混層焰與紊焰燃燒實驗。該高壓燃燒系統,為一雙腔體設計,由內爐與外爐所組成。內爐為參考本實驗室已發展多年之十字型燃燒器所設計而成,由水平與垂直鋼管所構成,透過水平腔體兩側之特製風扇與空孔板,可於十字型燃燒器中心處區域產生一近似等向性之紊流場,其均方根紊流擾動速度(u’’)最高可達8.4 m/s。在十字型內爐垂直腔體上下對稱位置,設有四個靈敏的釋壓閥,引燃爆炸後,內爐壓力若高於外爐約25 kPa,釋壓閥即會啟動,故火焰傳遞過程是在接近等壓條件下進行。外爐為一大型保護腔體,可於實驗中吸收由內爐所釋放之壓力,以確保實驗之安全性。利用高速高解析度攝影機,透過內爐與外爐之石英玻璃視窗,量測火焰之動態傳遞時序影像,經影像分析計算可獲得火焰燃燒速度。本研究針對挾帶流床氣化法所產出合成氣65%CO/35%H2之成份組合,及其貧油當量比在 當量比 0.5與0.7為主要研究對象,進行層流與紊流燃燒速度量測。另外,為了探討不同合成氣成份組合對於層焰與紊焰燃燒速度之影響,因此我們再選擇兩種不同合成氣成份組合,即50%CO/50%H2與95%CO/5%H2,在同樣u’’= 0.7條件下,進行層流與紊流燃燒速度量測實驗。結果顯示,貧油合成氣之層紊火焰在高壓條件下呈現高度不穩定狀態,導致向外傳遞之層流球狀火焰表面和紊流擴張火焰均充滿蜂巢狀結構;並發現在不同當量比值和不同合成氣成份組合之層流燃燒速度,均會隨壓力增加呈現負指數下降之趨勢,可表示成SL ~ p-n,其中n值範圍為0.10 ~ 0.20。此下降趨勢與相同受高壓影響之貧油甲烷層焰相比(SL ~ p-0.41)來的緩和許多。相反地,當固定u=1.4 m/s之條件下,貧油合成氣之紊流燃燒速度則會隨著壓力增加而增加,可表示ST ~ pm,其中m值範圍為0.11 ~ 0.22。也可發現在任一相同壓力條件下(p = 0.1 ~ 1.0 MPa),隨著合成氣中氫氣濃度或是當量比增加,皆會具有較高之SL和ST值。接著,為了更進一步探討紊流效應對於ST之影響,於不同初始壓力0.1 MPa與0.5 MPa,量測ST在不同紊流強度下之變化趨勢。結果顯示,增加紊流強度與增加壓力相比,能夠更有效地增加ST/SL值,但隨著紊流強度持續增加,ST/SL值增加幅度有越來越小之趨勢,產生所謂的彎折效應(bending effect)。此外,在高壓條件下此彎折效應仍會存在,且提升壓力似乎能夠使彎折效應延後產生。本研究結果對於合成氣於燃氣輪機與內燃機之直接應用,應有重要之幫助。
摘要(英) This study quantitatively measures the laminar and turbulent burning velocities (ST and SL) of premixed hydrogen/carbon monoxide syngas flames over an initial pressure range of p = 0.1 ~ 1.0 MPa. A series of centrally-ignited laminar and turbulent combustion experiment are performed, using a high-pressure, fan-stirred, large-scale, turbulent combustion system. This turbulent combustion system included an inner chamber and an outer chamber, as a double-chamber design. The inner chamber applies the same design of the cruciform burner previously used at National Central University led by Professor Shy, which is constructed by two mutually crossing cylindrical vessels, a horizontal vessel and vertical vessel, forming a cruciform shape. Using two identical frequency-controlled counter-rotating fans equipped at two ends of the horizontal vessel, a near-isotropic turbulent flow field can be generated in the central region of the inner chamber. In it the maximum value of turbulent fluctuating velocities u’’ can be up to 8.4 m/s. Furthermore, four sensitive pressure-releasing valves placed symmetrically around the vertical vessel of the inner chamber are applied. These valves are immediately activated when the pressure inside the inner chamber is 25 kPa greater than that of the outer chamber during explosion. Thus, outwardly propagating premixed flames interacting with isotropic turbulence can be obtained under nearly constant pressure condition. Besides, the outer chamber is large enough to absorb pressure releasing from the inner chamber, assuring the safety of experiments. Flame visualizations are carried out via optical-accessed quartz windows of both chambers using high-speed, high-resolution CMOS cameras. After the image processing, the flame burning velocities can thus be obtained. In this study, we select the syngas derived from entrained-flow gasifier with a fuel composition 65%CO/35%H2 at two different equivalence ratios of ? = 0.5 and 0.7 to measure laminar and turbulent velocity. Besides, in order to investigate effect of different syngas fuel composition for laminar and turbulent burning velocities, we also select two different syngas fuel composition 50%CO/50%H2 and 95%CO/5%H2, at the same ? = 0.7 to measure the laminar and turbulent burning velocities. Results show that lean syngas laminar and turbulent flames at elevated pressure are highly unstable resulting in cellular structures all over the expanding flame front surface. It is also found the laminar burning velocities all decrease with increasing pressure in a minus exponential manner for different equivalence ratios and syngas fuel composition, by which SL ~ p-n where the values of n range from 0.10 to 0.20. This trend is more modest than the same effect of pressure on lean methane laminar flame (SL ~ p-0.41). Contrarily, at a fixed u? ≈ 1.4 m/s, values of lean syngas ST increase with increasing pressure, by which ST ~ pm where the values of m range from 0.10 to 0.22. It is also found that, at any given pressure condition varying from p = 0.1 ~ 1.0 MPa, increasing hydrogen or equivalence ratios of syngas increases values of SL and ST. Moreover, in order to further investigate effect of turbulence on ST, we measures the changes of ST with different turbulent intensities at two different initial pressure 0.1 MPa and 0.5 MPa. Results show that increasing turbulent intensity is still a way much more effective in increasing value of ST/SL than increasing pressure, but the increments of ST/SL with u?/SL is getting smaller and smaller, revealing the bending effect. Moreover, this bending effect also exist at high pressure condition and pressure elevation seems to be able to delay bending effect. The present result should be of help in the direct application of syngas for gas turbines and internal combustion engines.
關鍵字(中) ★ 層流和紊流燃燒速度
★ 雙腔體風扇擾動式高壓紊流燃燒器
★ 高壓預混貧油合成氣燃燒
★ 氫氣/一氧化碳合成氣
★ 彎折效應
★ 蜂巢狀結構
關鍵字(英) ★ double-chamber fan-stirred explosion facility
★ cellular structures
★  bending effect
★ high-pressure lean premixed turublent combustion
★ laminar and turbulent burning velocities
★ hydrogen/carbon monoxide syngas
論文目次 摘要 I
Abstract III
誌謝 V
圖目錄 IX
符號說明 XIII
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方案 3
1.4 論文架構 4
第二章 文獻回顧 7
2.1紊流燃燒理論 7
2.2火焰傳遞 10
2.4拉伸與火焰傳播 11
2.5 火焰不穩定性 12
2.5.1 熱擴散不穩定 12
2.5.2 流力不穩定性 13
2.5.3 浮力不穩定性 14
2.6層流合成氣火焰傳遞 14
2.6.1 常壓層流合成氣火焰傳遞 14
2.6.1 高壓層流合成氣火焰傳遞 15
2.7紊流合成氣火焰傳遞 16
2.7.1 常壓紊流合成氣火焰傳遞 16
2.7.2 高壓紊流合成氣火焰傳遞 18
第三章 實驗設備與量測方法 27
3.1 高壓預混紊流十字型燃燒系統 27
3.2 高功率脈衝放電系統及引燃能量計算 29
3.3 高速影像擷取系統 30
3.4 燃氣當量比與火焰傳播計算 31
3.4.1 燃氣當量比 31
3.4.2 火焰傳播速度 32
3.4.3 有效 Lewis Number 32
3.5實驗流程 33
3.6 誤差分析 34
第四章 結果與討論 39
4.1火焰傳遞型態 39
4.1.1層流流場傳遞 39
4.1.2紊流流場傳遞 40
4.2 層流火焰傳遞機制 41
4.2.1 層流燃燒速度計算方法 41
4.2.2 壓力效應對於層流燃燒速度之影響 43
4.2.3 壓力效應對於火焰厚度之影響 46
4.2.4 壓力效應對於Ma數之影響 47
4.3 紊流火焰傳遞機制 48
4.3.1 紊流燃燒速度之量測 48
4.3.2 壓力效應對於紊流燃燒速度之影響 50
4.3.3 紊流效應對於紊流燃燒速度之影響 53
第五章 結論與未來工作 76
5.1 結論 76
5.2 未來工作 78
參考文獻 79
參考文獻 [1] The Department of Energy (DOE). http://www.doe.gov/.
[2] Rezaiyan, J. and Cheremisinoff N. P., Gasification Technologies: A Primer for Engineers and Scientists. Boca Raton, FL: Taylor & Francis, 2005.
[3] Peters, N., Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
[4] Dricoll, J. F., “Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities”, Prog. Energy Combust. Sci., Vol. 34, pp. 91-134, 2008.
[5] 林文基,“甲烷與丙烷預混紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,1999年。
[6] 陳彥志,“高效率天然氣加氫燃燒技術與汙染物定量量測”,國立中央大學機械工程研究所,碩士論文,2002年。
[7] 石偉達,“預混紊流燃燒:火花引燃機制與加氫效應之定量量測”,國立中央大學能源工程研究所,碩士論文,2007年。
[8] 李尚軍,“火花引燃機制與散佈狀燃燒形態之實驗研究”,國立中央大學機械工程研究所,碩士論文,2008年。
[9] 陳幸中,“高壓預混甲烷燃燒:層焰與紊焰傳播速度量測”,國立中央大學機械工程研究所,碩士論文,2009年。
[10] 彭明偉,“中央引燃往外傳播預混火焰在高壓條件下之層流和紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2010年。
[11] Shy, S. S., Lin, W. J. and Wei, J. C., “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion”, Proc. R. Soc. Lond., Vol. A 456, pp. 1997-2019, 2000.
[12] Shy, S. S., Lee, E. I., Cheng, N. W. and Yang, S. I., “Direct and Indirect Measurements of Flame Surface Density, Orientation, and Curvature for Premixed Turbulent Combustion Modeling in a Cruciform Burner”, Proc. Combust. Inst., Vol. 28, pp. 383-390, 2000.
[13] Higman C, van der Burgt M. Gasification. 2nd ed. Amsterdam: Gulf Professional Publishing; 2008.
[14] Liu, C. C., Shy, S. S., Chiu, C. W., Peng, M. W. and Chung, H. J., “Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment”, Int. J. Hydrog. Energy., Vol. 36, pp. 8595-8603, 2011.
[15] Damköhler, G., “The Effect of Turbulent on the Flame Velocity in Gas Mixtures”, Z. Elektrchem., Vol. 46, pp. 601-652, 1940. (English translation NASA Tech. Mem. 1112, (1947).
[16] Williams, F. A., Combustion Theory, 2nd Ed., Addison-Wesley, Redwood City, 1985.
[17] Bray, K. N. C., “Turbulent Flows with Premixed Reactants”, Turbulent Reacting Flows, Eds. Libby, P. A. & Williams, F. A., pp. 115-183, New York, Springer-Verlag, 1980.
[18] Borghi, R., “On the Structure and Morphology of Turbulent Premixed Flames”, Recent Advances in the Aerospace Sciences, Ed. C. Casci, pp. 117-138, New York, Plenum, 1985.
[19] Peters, N., “Laminar Flamelet Concepts in Turbulent Combustion”, Proc. Combust. Inst., Vol. 21, pp. 1231-1250, 1986.
[20] Peters, N., “The turbulent burning velocity for large-scale and small-scale turbulence”, J. Fluid Mech., Vol. 384, pp. 107-132, 1999.
[21] Shy, S. S., Shin, W. T., Liu, C. C., “More on Minimum Ignition Energy Transition for Lean Premixed Turbulent Methane Combustion in Flamelet and Distributed Regimes”, Combust. Sci. and Tech., Vol. 180, pp. 1735-1747, 2008.
[22] Shy, S. S., Shin, W. T. and Liu, C. C., “More on Minimum Ignition Energy Transition for Lean Premixed Turbulent Methane Combustion in Flamelet and Distributed Regimes”, Combust. Sci. and Tech., Vol. 180, pp. 1735-1747, 2008.
[23] Bradley, D., Cresswell, T. M. and Puttock, J. S. “Flame Acceleration Due to Flame-Induce Instabilities in Large-Scale Explosions”, Combust. Flame, Vol. 124, pp. 551-559, 2001.
[24] Kido, H. and Nakahara, M., “A Mode of Turbulent Burning Velocity Taking the Preferential Diffusion Effect into Consideration”, JSME Int. J., Ser., Vol. B 41(3), pp. 666-673, 1998.
[25] Bradley, D., Gaskell, P. H. and Gu, X. J., “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flame: A Computational Study”, Combust. Flame, Vol. 104, pp. 176-198, 1996.
[26] Liu, C. C., Shy, S. S., Chen, H. C. and Peng, M. W., “On Interaction of Centrally-Ignited, Outwardly-Propagating Premixed Flames with Fully-Developed Isotropic Turbulence at Elevated Pressure” Proc. Combust. Inst., Vol. 33 , pp. 1293-1299, 2011.
[27] Markstein, G. H., Nonsteady Flame Propagation, Pergamon, 1964.
[28] Darrieus, G., “Propagation D’Un Front de Flamme: Assai de Théorie des Vitesses Anomales de Déflagration par Developpement Spontané de la turbulence”, Presented at 6th Int. Cong. Appl. Mech., Paris, 1938.
[29] Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Pergamon, Oxford, 1987.
[30] Law, C. K. and Sung, C. J., “Structure, Aerodynamics, and Geometry of Premixed Flamelet”, Prog. Energy Combust. Sci., Vol. 26, pp. 459-505, 2000.
[31] McLean I. C., Smith D. B. and Taylor S. C., “The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO + OH reaction”, Proc. Combust. Inst., Vol. 25 , pp. 749-757, 1994.
[32] Brown M. J., McLean I. C., Smith D. B. and Taylor S. C., “Markstein lengths of CO/H2/air flames, using expanding spherical flames”, Proc. Combust. Inst., Vol. 26 , pp. 875-881, 1996.
[33] Davis S. G., Joshi A. V., Wang H. and Egolfopoulos F.,“An optimized kinetic model of H2/CO combustion”, Proc. Combust. Inst., Vol. 30 , pp. 1283-1292, 2005.
[34] Hassan M. I., Aung K. T. and Faeth G. M., “Properties of laminar premixed CO/H2/air flames at various pressures”, J. Propul. Power, Vol. 13 , pp. 239-245, 1997.
[35] Natarajan J., Lieuwen T. and Seitzman J., “Laminar flame speeds of H2/CO mixtures: Effect of CO2 dilution, preheat temperature, and pressure”, Combust. Flame, Vol. 151, pp. 104-119, 2007.
[36] Sun H., Yang S. I., Jomaas G. and Law C. K., “High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion”, Proc. Combust. Inst., Vol. 31 , pp. 439-446, 2007.
[37] Vu T. M., Park J., Kwon O. B., Bae D. S., Yun J. H. and Keel S.I., “Effects of diluents on cellular instabilities in outwardly propagating spherical syngase-air premixed flames”, Int. J. Hydrog. Energy, Vol. 35 , pp. 3868-3880, 2010.
[38] Littlejohn D., Cheng R. K., Noble D. R. and Lieuwen T., “Laboratory investigations of low-swirl injectors operating with syngases”, ASME J. Eng Gas Turbines Power, Vol. 132 , 011502-pp. 1-8, 2010.
[39] Venkateswarana P., Marshallb A.,Shina D. H., David N., Seitzmana J. and Lieuwena T., “Measurements and analysis of turbulent consumption speeds of H2/CO mixtures”, Combust. Flame, Vol. 158, pp. 1602-1614, 2011.
[40] Yakhot V., “Propagation Velocity of Premixed Turbulent Flames” Combust. Sci. and Tech., Vol. 60, pp. 191-214, 1988.
[41] Ichikawa Y., Otawara Y., Kobayashi H., Ogami Y., Kudo T., Okuyama M. and Kadowaki S., “Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure”, Proc. Combust. Inst., Vol. 33, pp. 1543-1550, 2011.
[42] Gaydon A. G., The Spectroscopy of Flames, 2nd Chapman and Hall, London, 1974.
[43] Daniele S., Jansohn P., Mantzaras J. and Boulouchos K., “Turbulent flame speed for syngas at gas turbine relevant conditions”, Proc. Combust. Inst., Vol. 33, pp. 2937-2944, 2011.
[44] Klimov A. M., “Premixed turbulent flames - Interplay of hydrodynamic and chemical phenomena”, Flames, lasers, and reactive systems, Vol. 88, pp. 133-146, 1983.
[45] Zimont V., Polifke W., Bettelini M. and Weisenstein W., “An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure”, ASME J. Eng. Gas Turb. Power-Trans., Vol. 120 , pp. 526-532, 1998.
[46] Kobayashi, H., Kawabata, Y. and Maruta, K., “Expermental Study on General Correlation of Turbulent Burning Velocity at High Pressure”, Proc. Combust. Inst., Vol. 27, pp. 941-948, 1998.
[47] Shy S. S., Lin W. J. and Peng K. Z., “High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner. , Proc. Combust. Inst., Vol. 28, pp. 561-568, 2000.
[48] Shy, S. S., I, W. K. and Lin, M. L., “A New Cruciform Burner and its Turbulence Measurements for Premixed Turbulent Combustion Study”, Exp. Thermal Fluid Sci., Vol. 25, pp. 1341-1347, 1994
[49] Yang, T. S., Shy, S. S. and Chyou, Y. P., “Spatiotemporal Intermittency Measurements in a Gas-Phase Near-Isotropic Turbulence Using High-Speed DPIV and Wavelet Analysis”, J. Mech., Vol. 21, pp. 157-169, 2005.
[50] Yang, T. S. and Shy, S. S., “Two-Way Interaction between Solid Particles and Homogeneous Air Turbulence: Particle Settling Rate and Turbulence Modification Measurements”, J. Fluid Mech., Vol. 526, pp. 171-216, 2005.
[51] Law C. K., Jomaas G. and Bechtold J. K., “Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: Theory and experiment”, Proc. Combust. Inst., Vol. 30, pp. 159-167, 2005.
[52] Glassman I. and Yetter R. A., Combustion. 4th ed. Amsterdam: Academic Press, 2008.
[53] Aldredge R. C., Vaezi V. and Ronney P. D., “Premixed-Flame Propagation in Turbulent Taylor–Couette Flow”, Combust. Flame, Vol. 115, pp. 395-405, 1998.
[54] Moreau P., Boutier A., “Laser velocimeter measurements in a turbulent flame”, Proc. Combust. Inst., Vol. 16, pp. 1747-1756, 1976.
指導教授 傅尹坤、施聖洋
(Yin-Kun Fu、Shenq-Yang Shy)
審核日期 2011-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明