博碩士論文 983208007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.133.131.168
姓名 林佑錫(Yu-Hsi Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 金屬粉末射出成型毛細吸附脫脂模擬
相關論文
★ 燃料電池複合式流道設計與膜電極組製程★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析
★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究★ 電解水產氫之電解液流場效應分析
★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究★ 高溫高壓之電解水產氫效率分析
★ 超音波場下電解水產氫之效應分析★ 以化學水浴法製備氧化鋅光電極薄膜之研究
★ 以化學浴沉積法製備四元化合物光電極薄膜之研究★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究
★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究
★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究★ 電解水產氫中極化作用之分析與研究
★ 磁場對水電解產氫效率增益之機制研究★ 二氧化銥/氧化還原石墨烯複合觸媒之水電解效能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 金屬粉末射出成型中脫脂為主要影響步驟,不當的脫脂會導致成品產生損壞,是限制整個金屬射出成型產能的主要關鍵。
在本研究中將利用Navier-Stokes方程式加上等位函數法,模擬毛細吸附脫脂的過程,探討在不同黏結劑、粉末顆粒間距和粒徑大小的情形下,毛細吸附脫脂的殘留率及粉末顆粒間產生的液橋現象,數值模擬結果顯示黏滯係數較小和表面張力較大的情形下有較低的殘留率,粉末顆粒間距長度與寬度的增加會有較低的殘留率,而粒徑長度太大或太小皆會有較高的殘留率。在顆粒頸部區域殘存的黏結劑受顆粒間距長度、寬度和粒徑大小的影響較黏結劑性質(黏滯係數、表面張力)明顯,顆粒間距長度和寬度增加及粒徑減小皆會造成子區域內空孔所佔面積增加,造成不可移除殘存率下降。
摘要(英) Debinding is the most important process in the MIM. An improper debinding process will lead to damage in finished products.
To analyze the residual saturation and liquid bridge phenomenon among particles in different working parameter, e.g., binder’s property, particle’s gap and diameter, navier-stokes equations and level set method are applied to simulate the debinding process in this research. Results show small viscosity and large surface tension lead to low residual saturation, and large gaps result in low residual saturation too. If particle’s diameter is too large or small, it will yield high residual saturation. The binders bounded in particles neck region are affected more by gap and particle’s diameter rather than by binder property, large gap and small diameter yield larger pore in the subdomain and result in a small irreducible saturation.
關鍵字(中) ★ 毛細吸附脫脂. 液橋
★ 金屬粉末射出成型
關鍵字(英) ★ MIM
★ wick debinding
★ liquid bridge
論文目次 中文摘要 I
英文摘要 II
目錄 III
表目錄 VI
圖目錄 VII
符號說明 X
第一章、緒論 1
1-1 前言 1
1-2 MIM 製程 2
1-3 MIM 的工程問題 3
1-3-1 粉末原料 3
1-3-2 黏結劑 5
1-3-3 脫脂技術 6
1-4 脫脂的分類 7
1-5 文獻回顧 9
1-6 研究動機 11
第二章、理論模式 13
2-1 物理模型與基本假設 13
2-1-1 物理模型 13
2-1-2 基本假設 14
2-2 統御方程式 14
2-3 邊界設定 16
第三章、數值方法 18
3-1 COMSOL 簡介 18
3-2 等位函數法(THE LEVEL SET METHOD) 19
3-2-1 等位函數法之原理 19
3-2-2 等位函數之重距離化 21
3-3 網格配置 22
3-4 計算流程 22
第四章、結果與討論 24
4-1 網格密度與時間間距測試 24
4-1-1 網格密度測試 24
4-1-2 時間間距測試 25
4-2 脫脂過程分析 25
4-3 流場分析 27
4-4 無因次參數分析 28
4-5 黏結劑性質對殘留率的影響 29
4-6 粉末顆粒對殘留率的影響 31
第五章、結論 34
參考文獻 36
參考文獻 1. P. A. Hauck, “Powder injection molding: current and long term outlook,” Journal of powder metallurgy, Vol 36, pp. 29-30, 2000.
2. 陳文信,金屬粉末射出成型零件市場,材料產業透析會刊,209(84),1~28頁,1995。
3. 周村裕幸,金屬粉末射出成型製程,粉末冶金會刊,22(1),31~40頁,1997。
4. 蘇英源,粉末冶金學,全華科技圖書股份有限公司,民國90年。
5. R. M. German and K. F. Hens, “Key issue in powder injection molding,” Journal of American ceramic society, Vol 70, pp. 1294-1302, 1991.
6. 劉世騏,合金增進粉末射出成型鐵鎳基材料之性能,國立台灣科技大學,碩士論文,民國84年。
7. 鄒宗翰,射出成型法中脫脂製成之研究,國立台灣大學,碩士論文,民國80年。
8. R. M. German, “Powder injection molding,” Journal of powder metallurgy, Vol 7, pp. 355-364, 1990.
9. J. Woodthorpe, M. J. Edirisinghe and J. R. G. Evans, “Properties of ceramic injection moulding formation,” Journal of materials science, Vol 24, pp. 1038-1048, 1989.
10. J. G. Zhang, M. J. Edirisinghe and J. R. G. Evans, “A catalogue of ceramic injection moulding defects and their causes,” Journal of powder metallurgy, Vol 9, pp. 72-82, 1989.
11. R. M. German, “Theory of thermal debinding,” Journal of powder metallurgy, Vol 23, pp. 237-245, 1987.
12. B. R. Patterson and C. S. Aria, “Debinding injection molding materials by melt wicking,” Journal of materials processing technology, Vol 41, pp. 22-24, 1989.
13. B. K. Lograsso and R. M. German, “Thermal debinding of injection moldied powder compacts,” Journal of powder metallurgy, Vol 22, pp. 17-22, 1990.
14. E. M. Summers and M. Akinc, “Wick debinding of molybdenum silicon boron extrudates,” Journal of American ceramic society, Vol 138, pp. 1670-1674, 2000.
15. Y. C. Lam, Y. Shengjie, S. C. M. Yu and K. C. Tam, “Simulation of polymer removal from a powder injection molding compact by thermal debinding,” Journal of metallurgical and materials transactions, Vol 31, pp. 2597-2606, 2000.
16. C. C. Chen and L. W. Hourng, “Numerical simulation of two-dimensional wick debinding in MIM by body fitted finite element method,” Journal of advanced powder technology, Vol 42, pp. 313-319, 1999.
17. M. S. Shin and L. W. Hourng, “Numerical simulation of capillary-induced flow in a powder-embedded porous matrix,” Journal of advanced powder technology, Vol 12, pp. 451-480, 2001.
18. T. L. Lin and L. W. Hourng, “Investigation of wick debinding in metal injection molding: numerical simulation by the random walk approach and experiments,” Journal of advanced powder technology, Vol 16, pp. 159-166, 2005.
19. I. M. Somasundram, A. Cendrowicz, D. I. Wilson and M. L. Johns, “Phenomenological study and modeling of wick debinding,” Journal of chemical engineering science, Vol 63, pp.3802-3809, 2008.
20. L. Gorjan, A. Dakskobler and T. kosmac, “Partial wick debinding of low pressure powder injection moulded ceramic parts,” Journal of the European ceramic society, Vol 30, pp. 3013-3021, 2010.
21. I. Olsson and G. Kreiss, “A conservative level set method for two phase flow” Journal of computational physics, Vol 210, pp. 225-246, 2005.
22. E. Lauga, M. Brenner and H. Stone, Microfluidics the no-slip boundary condition, The handbook of fluid dynamics, 1998.
23. Comsol multiphysics, Siemens product lifecycle management software inc.
24. M. Sussman, P. Smereka and S. Osher, “A level set approach for computing solutions to incompressible two-phase flow,” Journal of computational physics, Vol 114, pp. 146-159, 1994.
25. U. Frisch, B. Hasslacher and Y. Pomeau, “Lattice-gas automata for the navier-stokes equation,” Journal of American physical society, Vol 56, pp. 1505-1508, 1987.
26. A. Tomiyama, A .Sou and T. Sakaguchi, “Numerical analysis of bubble motion with the VOF method,” Journal of nuclear engineering and design, Vol 141, pp. 69-82, 1993.
27. S. Chen and G. Doolen, “Lattice Boltzmann for fluid flows,” Journal of fluid mechanics, Vol 30, pp. 329-364, 1998.
28. H. Takewaki, A. Nishiguchi and T. Yabe, “The constrained interpolation profile method for multiphase analysis,” Journal of computational physics, Vol 169, pp. 556-593, 2001.
29. S. Osher and R. P. Fedkiw, “Level set methods: an overview and some recent results,” Journal of computational physics, Vol 169, pp. 463-502, 2001.
30. M. Sussman and E. Puckett, “A coupled level set and volume of fluid method for computing 3d and axisymmetric incompressible two-phase flows,” Journal of computational physics, Vol 162, pp. 301-337, 2000.
31. On line resources: air property. http://www.engineeringtoolbox.com.
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2012-4-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明