博碩士論文 983208017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.146.152.99
姓名 林亭君(Ting-chun Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 多孔材應用於質子交換膜燃料電池散熱之研究
(Application of porous medium in PEM fuel cell cooling system)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 質子交換膜燃料電池之最終產物除了水與電外,也會產生熱。隨著燃料電池技術日漸成熟,電池堆也跟著發展起來。為了保持低溫操作條件(<80 。C),必須對電池進行冷卻動作。本文採取氣冷方式散熱,優點是可避免水冷散熱會產生離子導電的問題。另外,金屬發泡材具有重量輕、導熱佳及增加熱傳表面積等優點。本論文為首篇將金屬發泡材應用至燃料電池散熱系統之研究。本研究先製作幾種傳統散熱流道,並與有使用發泡材的散熱流道做比較,測量每種設計的熱對流係數並建立經驗關係式,了解各種流道的散熱能力,接著進行電池堆的實際成效量測。
由實驗結果可以得知,在一樣大小的設計面積下,由於受到空間上的限制,若使用傳統方式將肋條作為分隔流場與流道設計的主軸,不但不易達到流場均勻,也無法有效增加熱交換表面積,造成傳統流道的散熱效果低落。實驗結果也顯示,若填充發泡材在散熱流道中,因為發泡材的多孔特性,能使熱壁與冷卻氣體做熱交換的表面積增加,氣體在散熱裝置內部流動的路徑會變長,可有效利用冷卻氣體。此外,雖然發泡材流道的壓降比傳統流道大,但是因為經過計算結果得知在整體效率上,使用發泡材流道會比傳統流道來的高效率,因此建議在散熱用流道額外使用發泡材。
摘要(英) Except water and power, proton exchange membrane fuel cell (PEMFC) also generates heat while it is on operating. In order to keep PEMFC working in low temperature condition (<80 。C), it is required to develop a cooling system to remove waste heat. This study is focused on air cooling method, because it has the advantage of avoiding ionic contamination problem in liquid cooling method. Moreover, metal foam is lightweight, has high thermal conductivity, and large surface area for heat exchange. This study is the first investigation on metal foam applied to PEMFC cooling system.
In this study, the cooling ability of the plate designs in metal foam cooling channel and traditional cooling channels, including column channel and serpentine channel, are compared. Via measuring heat transfer coefficient, the correlation between Nu and Re is established empirically. These cooling designs are also applied to a 4-cell stack to verify the cooling effect.
The results show that the cooling ability of traditional cooling design is relatively poor due to the non-uniformity of gas flow, and the surface area for heat exchange is difficult to be increased in the traditional cooling design. On the contrary, the metal foam cooling design is better than the traditional ones. With the larger effective surface area and the ability to force a uniform gas flow, the heat transfer coefficient on metal foam design is larger than that of the traditional design, and it leads to that more heat could be taken away by the metal foam cooling design in a limited heating area. The pressure drop is larger in the metal foam design due to the drag caused by the porous structure, thus it needs extra pump work. However, the overall efficiency is still higher on system using metal foam cooling design than using traditional design. Thus it is recommended using metal foam design in a PEMFC stack system.
關鍵字(中) ★ 質子交換膜燃料電池
★ 散熱流道
★ 金屬發泡材
★ 氣冷
★ 電池堆
關鍵字(英) ★ air cooling
★ PEMFC
★ metal foam
★ stack
★ cooling plate
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 vi
表目錄 ix
圖目錄 x
符號說明 xiii
第一章 緒論 1
1.1前言 1
1.2質子交換膜燃料電池運作原理 2
1.3質子交換膜燃料電池結構 4
1.3.1質子交換膜 4
1.3.2觸媒層 5
1.3.3氣體擴散層 6
1.3.4雙極板 7
1.3.5氣密墊片 8
1.4研究動機 8
第二章 文獻回顧 10
2.1金屬多孔材 10
2.2溫度對燃料電池的影響 13
2.3散熱設計 15
第三章 實驗設備與方法 18
3.1實驗設備 18
3.1.1散熱組設計與量測 18
3.1.2測試架構 22
3.2金屬多孔材介紹 23
3.3電池測試 25
3.3.1電池組裝 25
3.3.2電池測試平台 26
3.4熱量估計 27
3.5實驗流程 28
3.6誤差分析 29
第四章 結果與討論 33
4.1流道設計對熱傳之影響 33
4.1.1幾何形狀影響 33
4.1.2發泡材影響 34
4.1.3熱傳關係式 35
4.2散熱板效率比較 37
4.3電堆測試 38
4.4應用分析-變動負載 43
第五章 結論與建議 47
5.1結論 47
5.2未來方向建議 48
參考文獻 [1] L. Carrete, K. A. Friedrich, U. Stimming, “Fuel cells-Fundamentals and Applications, Fuel Cells,” Vol. 1, pp. 5-39, 2001.
[2] S. M. H. Hashmi, “Cooling Strategies for PEM FC Stacks,” Helmut-Schmidt-Universitat, Ph. D. Dissertation, 2010.
[3] Y. J. Shon, G. G. Park, T. H. Yang, Y. G. Yoon, W. Y. Lee, S. D. Yim, C. S. Kim, “Operating characteristics of an air-cooling PEMFC for portable applications,” Journal of Power Sources, Vol. 145, pp. 604-609, 2005.
[4] E. Hontanon, M. J. Escudero, C. Bautista, P.L. Garcia-Ybarra, L, Daza, “Optimisation of flow-field in polymer electrolyte membrane fuell cells using computational fluid dynamics techniques,” Journal of Power Sources, Vol. 86, pp.363-368, 2000.
[5] K. Scott, P. Argyropoulos, P. Yiannopoulos, W. M. Taama, “Electrochmical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds,” Jounal of Power Sources, Vol. 31, pp. 823-832, 2001.
[6] A. Kumar, R. G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,” Journal of Power Sources, Vol. 114, pp54-62, 2003.
[7] A. Kumar, R. G. Reddy, “Materials and design development for bipolar/end plates in fuel cell,” Journal of Power Sources, Vol. 129, pp62-67, 2004.
[8] K. Boomsma, D. Poulikakos, F. Zwick, “Metal foams as compact high performance hat exchangers,”Mechanics of Materials, Vol. 35, pp. 1161-1176, 2003.
[9] S. Arisetty, A. K. Prasad, G. Advani, “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” Journal of Power Sources, Vol. 165, pp45-57, 2007.
[10] 蔡秉蒼,曾重仁,「金屬發泡材質子交換膜燃料電池之性能分析」,第三屆全國氫能與燃料電池學術研討會,FC043,國立台南大學,2008。
[11] 陳孟怡,「金屬發泡材質子交換膜燃料電池之研究」,碩士論文,國立中央大學機械工程學系,2009。
[12] 汪雙鳳,李炅,張偉保,「開孔泡沫金屬屬用於緊湊型熱交換器的研究進展」,化工進展,Vol.27,No.5,pp.675-678,2008。
[13] S. Mancin, C. Zilio, A. Cavallini, L. Rossetto, “Heat transfer during air flow in aluminum foams,” Heat and Mass Transfer, Vol. 53, pp.4976-4984, 2010.
[14] S. K. Park, S. Y. Choe, “Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects,” Journal of Power Sources, Vol. 179, pp.660-672, 2008.
[15] Y. H. Park, J. A. Caton, “Development of a PEM stack and performance analysis including the effects of water content in the membrane and cooling method,” Journal of Power Sources, Vol. 179, pp.584-591, 2008.
[16] J. H. Jang, H. C. Chiu, W. M. Yan, “Effect of operating conditions on the performances of individual cell and stack of PEM fuel cell,” Journal of Power Sources, Vol. 180, pp.476-483, 2008.
[17] S. H. Yu, S. Sohn, J. H. Nam, C. J. Kim, “Numerical study to examine the performance of multi-pass Serpentine flow-fields for cooling plates in polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 194, pp.697-703, 2009.
[18] J. G. Pharoah, O. S. Burheim, “On the temperature distribution in polymer electrolyte fuel cell,” Journal of Power Sources, Vol. 195, pp. 5235-5245, 2010.
[19] V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez, “Development of small polymer electrolyte fuel cell stacks,” Journal of Power Sources, Vol. 70, pp.55-58, 2001.
[20] J. Wu, S. Galli, I. Lagana, A. Pozio, G. Monteleone, X. Z. Yuan, J. Martin, H.Wang, “An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow,” Journal of Power Sources, Vol. 188, pp.199-204, 2009.
[21] L. Yahia, A. Bruno, C. Cathy, P. Hassan, “A chaotic heat-exchanger for PEMFC cooling applications,” Journal of Power Sources, Vol. 156, pp.114-118, 2006.
[22] C. Y. Wen, G. W. Huang, “Application of thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell,” Journal of Power Sources, Vol. 178, pp.132-140, 2007.
[23] Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Meterials, ASTM International D5470-06, 2006.
[24] R. A. Writz, F. Huang, M. Greiner,“Correlation of Fully Developed Heat Transfer and Pressure Drop in a Symmetrically Grooved Channel,” Journal of Heat Transfer, Vol.121, pp.236-239, 1999.
[25] G. Leonardo, G. Gianpiero, T. Enrico, “Heat Transfer Characterization of Metallic Foams,” ACS Applied Materials and Interfaces, Vol. 44, pp.9078-9085, 2005
[26] G. Indranil, “Heat transfer correlation for high-porosity open-cell foam,” Journal of Heat Transfer, Vol. 52, pp.1488-1494, 2009
[27] A. A. Zakauskas, “Convective Heat Transfer in Cross-Flow,”Handbook of Single-Phase Heat Transfer, Wiley, N. Y., 1987.
[28] V. V. Calmidi, R. L. Mahajan, “Forced Convection in High Porosity Metal Foams,” Journal of Heat Transfer, Vol. 122, pp.557-566, 2000.
[29] P. T. Garrity, J. F. Klausner, R. Mei, “Performance of Aluminum and Carbon Foams for Air Side Heat Transfer Augmentation,” Journal of Heat Transfer, Vol. 132, pp.121901-1-121901-9, 2011
[30] B. C. Kou, “Automatic control systems,”Seventh Edtion, Prentice-Hall, Englewood Cliffs, Englewood Cliffs, New Jersey, 1995.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2012-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明