博碩士論文 983208018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.80.5.157
姓名 余政哲(Jheng-Jhe Yu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
(Ordered Porous Carbon as The Catalyst Support for Fuel cells)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究
★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究
★ 中溫固態氧化物燃料電池複合系統分析★ 中文質子傳輸型固態氧化物燃料電池陽極之研究
★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析★ 金屬發泡材應用於質子交換膜燃料電池內流道之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目錄
本研究利用模板法製作出整齊的多孔碳並應用於燃料電池陰極觸媒擔體。首先以四種不同粒徑的矽微粒球做為模板,經由酚醛樹脂填入、碳化後可得四種不同孔徑的多孔洞碳。還原白金奈米粒於多孔洞碳上後探討不同孔徑的多孔洞碳對觸媒有哪些影響。
從SEM圖可發現多孔洞碳的孔徑及結構與模板形狀、尺寸大小及排列方式有關係,氣體吸附分析藉由BET公式可計算出多孔洞碳的比表面積,其結果皆比商用碳黑XC-72R高,且值隨著碳材孔徑變小有變大的趨勢。還原觸媒並確定擔載量皆在20wt%附近後,利用TEM影像進行觸媒粒徑統計,發現使用醇類還原法可成功製備出分散均勻且小顆的白金觸媒,其平均粒徑隨著碳材表面積變大有變小的趨勢,與XRD繞射峰半高寬逐漸變緩符合,CV的分析更能證明小顆粒觸媒能提供較多的活性表面積。此外,XPS分析的化學位移現象判斷為金屬氧化態含量較高所導致。LSV分析可比較觸媒在陰極的活性,發現ORR受到觸媒顆粒大小、活性表面積、金屬氧化物含量及碳材結構所共同影響。以CV長時間測試來觀察觸媒穩定性,發現比表面積較大的碳材其觸媒活性表面積變化較不大。
摘要(英) Abstract
We used template transfer method to fabricate ordered porous carbons and used the porous carbon as the catalyst support for fuel cell application. At first, four different size silica spheres were synthesized as the templates and finally obtained ordered porous carbon with different pore size after the procedure of phenolic formaldehyde resin injection, carbonization and tamplate etching. In this study we mainly focus on the effects of different pore size porous carbons on the catalyst.
The SEM images showed that the pore size and structure of the porous carbon were affected by the shape, partical size and the arrangment of the template. ASAP analysis indicated that the ordered porous carbons had higher BET surface area than commercial carbon black and the value increased with decreasing pore size of porous carbon. Small Pt nanoparticles (NPs) with uniform dispersion were successfully grown on the orderd porous carbons by using polyol reducing method. Pt loadings for all samples were all close to 20wt%. Particle sizes of Pt were measured from TEM images. The mean particle size of Pt was found to be smaller when grown on higher surface area carbon. The same trend was also observed from the XRD results. CV analysis further proved that ECSA increased when the Pt NPs became smaller. In addition, the high percentage of Pt-oxides caused the chemical shift in XPS analysis. Therefore, the Pt NPs size, ECSA, Pt-oxide amount and support structure all can influence the oxygen reduction reaction (ORR) activity. The long term test was used to test the catalytic stability and we found that ECSA was much stable for Pt grown on the higher surface area porous carbon.
關鍵字(中) ★ 氧氣還原反應
★ 燃料電池
★ 觸媒擔體
★ 多孔洞碳
關鍵字(英) ★ porous carbon
★ catalyst support
★ fuel cell
★ ORR
論文目次 目錄
摘要.............................................i
Abstract.........................................ii
誌謝.............................................iv
目錄.............................................v
表目錄...........................................viii
圖目錄...........................................ix
第一章 緒論.....................................1
1-1 前言...........................................1
1-2 燃料電池簡介...................................2
1-3 質子交換膜燃料電池構造及原理...................3
1-4 研究目的.......................................5
第二章 文獻回顧.......................................6
2-1 觸媒層介紹及反應機制...........................6
2-1-1. 觸媒層結構.....................................6
2-1-2. 陽極觸媒.......................................6
2-1-3. 陰極觸媒.......................................7
2-1-4. 目前陰極觸媒遭遇的問題.........................8
2-2 中孔洞碳.......................................9
2-3 多孔洞碳應用在燃料電池.........................10
2-3-1. 碳擔體的比較...................................10
2-3-2. 多孔洞碳材用於燃料電池.........................11
2-4 多孔洞碳製作...................................12
2-4-1. 矽微粒球製作...................................13
2-4-2. 碳前驅物的填入.................................15
2-5 觸媒製備方式...................................16
第三章 研究方法與進行步驟.............................19
3-1 研究方法.......................................19
3-2 實驗步驟.......................................19
3-3-1. 模板製作.......................................19
3-3-2. 填料及碳化.....................................20
3-3-3. 模板移除.......................................20
3-3 鉑顆粒合成.....................................20
3-4 分析儀器.......................................21
3-5-1. 掃描式電子顯微鏡(SEM)..........................22
3-5-2. 比表面積及孔洞結構分析.........................23
3-5-3. X-ray 繞射分析(XRD)............................27
3-5-4. 穿透式顯微鏡(TEM)..............................29
3-5-5. 熱重損失儀(TGA)................................29
3-5-6. X光光電子能譜儀(XPS)...........................30
3-5-7. 電性分析.......................................30
第四章 結果與討論.....................................34
4-1 多孔洞碳的製備及結果...........................34
4-1-1. 矽球粒徑的影響.................................34
4-1-2. 不同孔徑的多孔洞碳比較.........................35
4-2 觸媒還原在多孔洞碳的結果.......................38
4-3 XPS分析........................................40
4-4 觸媒還原在多孔洞碳的性能表現...................41
4-4-1. CV分析結果.....................................41
4-4-2. LSV分析結果....................................42
4-5 長時間測試.....................................44
第五章 結論與未來方向.................................46
參考文獻...............................................48
表目錄
表2-1. 鉑顆粒在不同碳材上的表面積.....................59
表2-2. 還原在不同擔體上的鉑顆粒大小比較...............59
表2-3. 使用不同擔體的鉑氧化電流密度...................59
表4-1. 不同尺寸的矽微粒製備參數.......................62
表4-2. 不同樣品的孔徑大小及比表面積比較...............62
表4-3. 不同樣品的活性表面積及觸媒粒徑關係.............63
表4-4. 不同樣品Pt4f7/2能階峰位置及價態組成比例比較....63
圖目錄
圖2-1. 表面積比較圖...................................65
圖3-1. 矽球模板製作流程圖.............................66
圖3-2. 碳化流程圖.....................................66
圖3-3. 乙二醇的氧化反應路徑...........................67
圖3-4. 觸媒還原流程圖.................................67
圖3-5. 樣品製備及測試流程圖...........................68
圖3-6. 電子束與試片作用示意圖.........................68
圖3-7. 等溫吸附曲線...................................69
圖3-8. 不同孔徑形狀的吸附曲線.........................69
圖3-9. X-ray射入晶體中反射造成波程差示意圖............70
圖3-10. 循環伏安法裝置圖...............................70
圖3-11. Pt/C在0.1M過氯酸電解液中的CV曲線...............71
圖4-1. 矽微粒SEM圖,順序同樣品編號....................72
圖4-2-1. A樣品小、大倍率SEM圖(孔洞約320nm).............73
圖4-2-2. B樣品小、大倍率SEM圖(孔洞約280nm).............74
圖4-2-3. C樣品小、大倍率SEM圖(孔洞約180nm).............75
圖4-2-4. D樣品小、大倍率SEM圖(孔洞約60nm)..............76
圖4-3. 等溫吸脫附曲線................................77
圖4-4. 多孔洞碳與商用碳黑NLDFT孔徑分佈圖.............78
圖4-5. 使用不同還原劑還原Pt在AB碳上的CV結果比較......79
圖4-6. 各樣品在熱重分析儀觀察碳燒掉後的殘重量........79
圖4-7. 使用甲醛還原觸媒於各種碳XRD圖.................80
圖4-8-1. AB樣品低、高倍率TEM影像圖.....................81
圖4-8-2. A樣品低、高倍率TEM影像圖......................82
圖4-8-3. B樣品低、高倍率TEM影像圖......................83
圖4-8-4. C樣品低、高倍率TEM影像圖......................84
圖4-8-5. D樣品低、高倍率TEM影像圖......................85
圖4-8-6. ETEK樣品高倍率TEM影像圖.......................86
圖4-9. TEM晶格相影像,順序如樣品編號(scale bar=5 nm).87
圖4-10. 各樣品觸媒顆粒尺寸統計結果,順序如樣品編號....88
圖4-11. 各樣品在C1s軌域上的束縛能比較圖...............89
圖4-12. 各樣品在Pt4f軌域上的束縛能比較圖..............89
圖4-13. 各觸媒樣品的Pt4f光電子能譜分峰比較圖..........90
圖4-14. 各樣品的CV性能圖比較圖........................91
圖4-15. 各樣品LSV-ORR性能比較圖.......................91
圖4-16. 反應物濃度變化示意圖..........................92
圖4-17. 各樣品LSV-ORR性能局部比較圖...................92
圖4-18. CV長時間測試ECSA變化圖........................93
圖4-19. CV長時間測試ECSA衰退變化圖(百分比)............93
圖4-20. CV長時間測試後ETEK於高倍率TEM影像圖...........94
圖4-21. CV長時間測試後A樣品於高倍率TEM影像圖..........94
圖4-22. CV長時間測試後B樣品於高倍率TEM影像圖..........95
圖4-23. CV長時間測試後C樣品於高倍率TEM影像圖..........95
圖4-24. CV長時間測試後D樣品於高倍率TEM影像圖..........96
圖4-25. 樣品CV長時間測試後顆粒尺寸統計結果............97
圖4-26. CV長時間測試後自製樣品於低倍率TEM影像圖.......98
參考文獻 [1] Noboru Sato, “Environmental science and energy technologies of automotive engineering in the 21st century,” Oyo Buturi, Vol.72, No7, pp.857-864, 2003
[2] Kim Kinoshita, Electrochemical Oxygen Technology, John Wiley &Sons, New York, 1992
[3] Karl V. Kordesch, Günter R. Simader, Fuel Cells and Their Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1996
[4] Takako Toda, Hiroshi Igarashi, hiroyuki Uchida, Masahiro Watanabe, “Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co,” Journal of the Electrochemical Society, Vol.146, pp.3750-3756, 1999
[5] Yuehe Lin, Xiaoli Cui, Xiangrong Ye, “Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid,” Electrochemistry Communications, Vol.7, pp. 267-274, 2005
[6] Cheng Wang, Mahesh Waje, Xin Wang, Jason M. Tang, Robert C. Haddon, Yushan Yan, “Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes,” Nano Letters, Vol.4, pp.345-348, 2003
[7] Carol A. Bessel, Kate Laubernds, Nelly M. Rodriguez, R. Terry K. Baker, “Graphite Nanofibers as an Electrode for Fuel Cell Applications,” The Journal of Physical Chemistry B, Vol.105, pp.1115-1118, 2001
[8] Shau Xiang Chen, Xin Zhang, Pei Kang Shen, “Macroporous conducting matrix:Fabrication and application as electrocatalyst support,” Electrochemistry Communications, Vol.8, pp. 713-719, 2006
[9] Ji Bong Joo, Pil Kim, Wooyoung Kim, Jongsik Kim, Jongheop Yi, “Preparation of mesoporous carbon templated by silica particles for use as a catalyst support in polymer electrolyte membrane fuel cells,” Catalysis Today, Vol.111, pp.171–175, 2006
[10] Hansan Liu, Chaojie Song, Lei Zhang, Jiujun Zhang, Haijiang Wang, David P. Wilkinson, “A review of anode catalysis in the direct methanol fuel cell,” Journal of Power Sources, Vol.155, pp.95–110, 2006
[11] Jong Sung Yu, Soonki Kang, Suk Bon Yoon, and Geunseok Chai, “Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter,” Journal of American Chemical Society, Vol.124, pp.9382–9383, 2002
[12] Jinwoo Lee, Songhun Yoon, Seung M. Oh, Chae-Ho Shin, Taeghwan Hyeon, “Development of a New Mesoporous Carbon Using an HMS Aluminosilicate Template,” Advanced Materials, Vol.12, pp.359–362, 2000
[13] Haoshen Zhou, Shenmin Zhu, Mitsuhiro Hibino, Itaru Honma, “Electrochemical capacitance of self-ordered mesoporous carbon,” Journal of Power Sources, Vol.122, pp.219–223, 2003
[14] Haoshen Zhou, Shenmin Zhu, Mitsuhiro Hibino, Itaru Honma, Masaki Ichihara, “Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance,” Advanced Materials , Vol.15, pp.2107–2111, 2003
[15] Baizeng Fang, Minsik Kim, Jung Ho Kim and Jong-Sung Yu, “Controllable Synthesis of Hierarchical Nanostructured Hollow Core/Mesopore Shell Carbon for Electrochemical Hydrogen Storage,” Langmuir , Vol.24, pp.12068–12072, 2008
[16] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, Vol.359, pp.710-712, 1992
[17] Jackie Y. Ying, Christian P. Mehnert, Michael S. Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials,” Angewandte Chemie International Edition, Vol.38, pp.56-77, 1999
[18] Hirotoshi Yamada, Taiki Hirai, Isamu Moriguchi, Tetsuichi Kudo, “A highly active Pt catalyst fabricated on 3D porous carbon,” Journal of Power Sources, Vol.164, pp.538–543, 2007
[19] Elisa Paola Ambrosio, Carlotta Francia, Maela Manzoli, Nerino Penazzi, Paolo Spinelli “Platinum catalyst supported on mesoporous carbon for PEMFC,” International Journal of Hydrogen Energy, Vol. 33, pp.3142 – 3145, 2008
[20] Kuiyang Jiang, Yuan Wang, Jijun Dong, Linkin Gui, Youqi Tang, “Electrodeposited metal sulfide semiconductor films with ordered nanohole array structures,” Langmuir, Vol.17, pp.3635-3638, 2001
[21] Takashi Yanagishita, Kazuyuki Nishio, Hiseki Msuda, “Fabrication of metal nanohole arrays with high aspect ratios using two-step replication of anodic porous alumina,” Advance Materials, Vol.17, pp.2241-2243, 2005
[22] Hideki Masuda, Haruki Yamada, Masahiro Satoh, Hidetaka Asoh, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, Vol.71, pp.2770-2772, 1997
[23] X. S. Zhao, Fabing Su, Qingfeng Yan, Wanping Guo, Xiao Ying Bao, Lu Lv, Zuocheng Zhou, “Templating methods for preparation of porous structures,” Journal of Materials Chemistry, Vol.16, pp.637–648, 2006
[24] Achim Manzke, Christian Pfahler, Oliver Dubbers, Alfred Plettl, Paul Ziemann, Daniel Crespy, Eyk Schreiber, Ulrich Ziener, Katharina Landfester, “Etching masks based on miniemulsions: A novel route towards ordered arrays of surface nanostructures,” Advanced Materials, Vol.19, pp.1337–1341, 2007
[25] Kota Sreenivasa Rao, Khalil El-Hami, Tsutomu Kodaki, Kazumi Matsushige, Keisuke Makino, “A novel method for synthesis of silica nanoparticles,” Journal of Colloid and Interface Science, Vol.289, pp.125–131, 2005
[26] Qian Zhou, Peng Dong, Bingying Cheng, “Progress in three-dimensionally ordered self-assembly of colloidal SiO2 particles,” China particuology, Vol.1, pp.124-130, 2003
[27] Werner Stöber, Arthur Fink, Ernst Bohn, “Controlled growth of monodispersed silica spheres in the micron size range,” Journal of Colloid and Interface Science, Vol.26, pp.62-69, 1968
[28] D. B. Akolekar, A. R. Hind, S. K. Bhargava, “Synthesis of Macro-, Meso-, and Microporous Carbons from Natural and Synthetic Sources, and Their Application as Adsorbents for the Removal of Quaternary Ammonium Compounds from Aqueous Solution,” Journal of colloide and interface science, Vol.199, pp.92–98, 1998
[29] Li-Heng Kao, Tzu-Chien Hsu, “Silica template synthesis of ordered mesoporous carbon thick films with 35-nm pore size from mesophase pitch solution,” Materials Letters, Vol.62, pp.695-698, 2008
[30] Zuocheng Zhou, Qingfeng Yan, Fabing Su, X. S. Hao, “Replicating novel carbon nanostructures with 3D macroporous silica template,” Journal of Materials Chemistry, Vol.15, pp.2569–2574, 2005
[31] Jong-Sung Yu, Suk Bon Yoon, Geun Seok Chai, “Ordered uniform porous carbon by carbonization of sugars,” Carbon, Vol.39, pp.1421 –1446, 2001
[32] Sang-Wook Woo, Kaoru Dokko, Keiji Sasajima, Takashi Takeia, Kiyoshi Kanamura, “Three-dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres,” Chemical communications, Vol.39, pp.4099–4101, 2006
[33] Soonki Kang, Jong-Sung Yu, Michal Kruk, Mietek Jaroniec, “Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties,” Chemical communications, Vol.16, pp.1670–1671, 2002
[34] L. B. Okhlopkova, A. S. Lisitsyn, V. A. Likholobov, M. Gurrath, H. P. Boehm, “Properties of Pt/C and Pd/C catalysts prepared by reduction with hydrogen of adsorbed metal chlorides: Influence of pore structure of the support,”Appied Catalysis, Vol.204, pp.229-240, 2000
[35] J. Lobato, M. A. Rodrigo, J. J. Linares, K. Scott, ” Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol.157, pp.284-292, 2006
[36] E. M. Crabb, M. K. Ravikumar, “Synthesis and characterisation of carbon-supported PtGe electrocatalysts for CO oxidation,” Electr ochimica Acta, Vol.46, pp.1033-1041, 2001
[37] Zhaolin Liu, Jim Yang Lee, Ming Han, Weiciang Chen, Leong Ming Gan, “Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions,” Journal of Material Chemistry, Vol.12, pp.2453-2458, 2002
[38] Hyun Tae Kim, Han-Ik Joh, Sang Heup Moon, “Improved performance of PtRu/C prepared by selective deposition of Ru on Pt as an anode for a polymer electrolyte membrane fuel cell,” Journal of Power Sources, Vol.195, pp.1352-1358, 2010
[39] Sang Hoon Joo, Hyung Ik Lee, Dae Jong You, Kyungjung Kwon, Jin Hoe Kim, Yeong Suk Choi, Min Kang, Ji Man Kim, Chanho Pak, Hyuk Chang, Doyoung Seung, “Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes,” Carbon, Vol.46, pp.2034-2045, 2008
[40] Pil Kim, Ji Bong Joo, Wooyoung Kim, Heesoo Kim, In Kyu Song, Jongheop Yi, “Direct fabrication of Pt-supported macroporous carbon with nanoporous walls,” Letters to the Editor / Carbon, Vol.43, pp.2397–2429, 2005
[41] B. C. Satishkumar, Erasmus M Vogl, A. Govindaraj, C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” Journal of Physics D: Applied Physics, Vol.29, pp.3173-3176, (1996)
[42] Vincenzo Lordi, Nan Yao, James Wei, “Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst,” Chemistry of Materials, Vol.13, pp.733- 737, 2001
[43] Zhenhua Zhou, Suli Wang, Weijiang Zhou, Guoxiong Wang, Luhua Jiang, Wenzhen Li, Shuqin Song, Jianguo Liu, Gongquan Sun, Qin Xin, “Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell,” Chemical communications, Vol.3, pp.394-395, 2003
[44] 林佑安, “多孔性碳材應用於質子交換膜燃料電池觸媒層之研究”, 國立中央大學, 碩士論文, 2009
[45] 陳力俊, 張立, 梁鉅銘, 林文台, 楊哲人, 鄭晃忠, 材料電子顯微鏡學, 全華科技圖書公司, 2003
[46] Stephen Brunauer; The Adsorption of Gases and Vapor., Princeton University, Princeton, Now York, 1943
[47] Olga A. Baturina, Karen E. Swider-Lyons, “Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction,” Anal. Chem., Vol.82, pp.6321-6328, 2010
[48] Robert E. De La Rue, Charles W. Tobias, “On the Conductivity of Dispersions,” Journal of the Electrochemical Society, Vol.106, pp.827-833, 1959
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明