博碩士論文 983208020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.128.199.88
姓名 黃正權(Cheng-chuan Huang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析
★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析
★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析
★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析★ MOCVD 行星式腔體之模型建立與傳輸現象分析
★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析
★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究★ 二段陽極處理法應用於鈦薄膜成長之研究
★ 交流電發光二極體之接面溫度與熱阻量測研究★ 液滴於具溫度梯度的微流道之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用數值模擬方法,在柴式晶體生長過程外加水平式磁場,探討水平磁場對熔湯流場及溫場分布之影響。分析熔湯溫度分布與速度分布在無磁場與水平式磁場下之變化,並比較不同晶體拉速對其之影響。水平式磁場的熔湯流動流動型態受羅倫茲作用呈現三維流動分布,在平行磁場與垂直磁場兩方向形成不同的渦流流動型態,其平行磁場方向剖面之熔湯流動大多為往堝底流,而在垂直磁場方向之流動則保留完整的渦流型態,而熔湯中固液界面下方會形成一個流速較快的盤旋渦流,此渦流使的水平式磁場中固液界面形狀較無磁場時平坦。其兩剖面之熔湯對流的差異會影響會其熔湯內的熱量傳遞,因此熔湯內溫度分布在兩剖面產生不同分布曲線,其堝壁最高溫亦不相同。水平式磁場之堝壁溫度比無磁場作用時之堝壁溫度高,因此熔湯內之溫度梯度較大,且其固液界面上之溫度梯度亦較大。熔湯流速在水平式磁場中小於無磁場,且熔湯內之速度分布不同,其熔湯中大部分區域之流速緩慢,僅在靠近三相點附近流速較快,比較兩這之自由表面熔湯流速,水平式磁場下之熔湯自由表面流速大幅降低。不同晶體拉速下,水平式磁場固液界面形狀變化相對大於無磁場,在無磁場與水平式磁中,堝壁最高溫會隨著晶體拉速的提高而減少,但是其固液界面上之溫度梯度隨著晶體拉速提高而增加,熔湯速度場受晶體拉速影響不大,熔湯內速度分布保持相似,且自由表面附近之熔湯流速變化極小。
摘要(英) In this study, the numerical simulation has been performed in order to clear the effect of transverse magnetic field during crystal growth that compared the flow of melt, temperature distribution and velocity distribution in the melt between transverse magnetic field and no magnetic field, and also compared in different crystal pulling rate. The Lorentz force induced by transverse magnetic field strongly affected the melt flow. Melt flow was Three-dimensional, so there were two different flow patterns on plane along and crossing transverse magnetic field, separately. Melt flow went down to the bottom of crucible on the plane along magnetic field. By contrast, melt flow maintained with full vortex on the plane crossing magnetic field. A stronger spiral vortex motion is formed under the crystal-melt interface that makes the interface in transverse magnetic field was more uniform in no magnetic field. Heat transfer was influenced by these two different flow patterns in two directions. Thus, both temperature distribution and the highest temperature were different in two perpendicular directions. Temperature of crucible with transverse magnetic field is higher than that without magnetic field. So, not only the temperature gradient but also the temperature gradient on melt-crystal interface with transverse magnetic field was higher than that without magnetic field. Melt flow velocity with transverse magnetic field was lower than without magnetic field and there were different velocity distributions in transverse magnetic field and without magnetic field. With transverse magnetic field, most parts of melt flow were slow, but velocity increased near the triple point. At the melt-free surface, flow velocity with transverse magnetic field was strongly lower than that without magnetic field. This paper also discussed about melt flow patterns, temperature field, and velocity field using different crystal growth rates with transverse magnetic field and without magnetic field. With increasing crystal growth rate, the melt-crystal interface of transverse magnetic field was more convex toward crystal than one without magnetic field. Melt temperature field is similar to each other with different crystal growth rates, but the highest point decreased with increasing crystal growth rate. However, the temperature gradient on melt-crystal interface increased with increasing crystal growth rate. Melt velocity field was little affected by changing crystal growth rate, and velocity field was similar to each other, and so as near melt-free surface the velocity changed slightly.
關鍵字(中) ★ 磁場
★ 氧
★ 柴氏長晶法
★ 矽單晶
關鍵字(英) ★ oxygen
★ Czochralski (CZ)
★ transverse magnetic field
★ single crystalline-silicon (sc-si)
論文目次 摘要...................................................i
Abstract...............................................ii
誌謝...................................................iv
目錄...................................................v
圖目錄.................................................vii
表目錄.................................................x
符號說明...............................................xi
第一章 緒論............................................1
1-1 前言...............................................1
1-2 文獻回顧...........................................1
1-3 研究動機與目的.....................................4
第二章 研究方法........................................7
2-1 物理系統...........................................7
2-2 基本假設...........................................7
2-3 數學模式...........................................8
2-3-1 統御方程式...................................8
2-3-2紊流計算方式..................................9
2-3-3 邊界條件.....................................9
2-4 無因次參數.........................................11
2-5 數值方法與網格、收斂條件測試.......................14
2-5-1 數值方法.....................................14
2-5-2 網格與收斂條件測試...........................14
第三章 結果與討論......................................22
3-1外加磁場對柴氏長晶法之影響機制......................22
3-1-1 磁場對熔湯之機制.............................22
3-1-2 水平式磁場下晶體旋轉與坩堝旋轉之機制.........23
3-2 水平式磁場之熔湯流場、熱場與速度場分析.............24
3-2-1 熔湯流場分析.................................24
3-2-2 熔湯熱場分析.................................26
3-2-3 熔湯速度分析.................................27
3-3 水平式磁場下不同晶體拉速之影響.....................28
3-3-1 不同晶體拉速之熔湯流場分析...................28
3-3-2 不同晶體拉速之熔湯流場分析...................29
3-3-3不同晶體拉速之熔湯速度場分析..................29
第四章 結論與未來研究方向..............................62
4-1 結論...............................................62
4-2 未來研究方向.......................................63
參考文獻...............................................64
參考文獻 [1] 蘇漢儒:「半導體材料製程與研究」。2009年4月5日。
[2] G. K. Teal and J. B. Little, “Growth of germanium
single crystals”, Physical Review, Vol. 78, pp. 647,
1950.
[3] 陳智勇,「柴氏生長鈮酸鋰塊晶之研究分析」,國立中央大
學,碩士論文,民國93年。
[4] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi,
S. Glunz, S. Rein, W. Wettling, I. Yamasaki, H. Sawai,
H. Ohtuka and T. Warabisako, “Suppression of light
degradation of carrier lifetimes in low-resistivity CZ-
Si solar cells“, Solar Energy Materials & Solar
Cells, Vol. 65, pp. 277-285, 2001.
[5] K. Hoshikawa and X. Huang, “Oxygen transportation
during Czochralski silicon crystal growth“, Materials
Science and Engineering, B72, pp. 73–79, 2000.
[6] T. Zhang, G. X. Wang, H. Zhang, F. Ladeinde and V.
Prasad, “Turbulent transport of oxygen in the
Czochralski growth of large silicon crystals“,
Journal of Crystal Growth, Vol. 198-199, pp. 141-146,
1999.
[7] H. Matsuo, R. B. Ganesh, S. Nakano, L. Liu, Y.
Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi and K.
Kakimoto, “Thermodynamical analysis of oxygen
incorporation from a quarz crucible during
solidification of multicrystalline silicon for solar
cell“, Journal of Crystal Growth, Vol. 310, pp. 4666-
4671, 2008.
[8] A. D. Smirnov and V. V. Kalaev, “Development of
oxygen transport model in Czochralski growth of
silicon crystals“, Journal of Crystal Growth, Vol.
310, pp. 2970-2976, 2008.
[9] I. Kanda, T. Suzuki and K. Kojima, “Influence of
crucible and crystal rotation on oxygen-concentration
distribution in large-diameter silicon single crystals
“, Journal of Crystal Growth, Vol. 166, pp. 669-674,
1996.
[10] K. Yi, K. Kakimoto, M. Eguchi and H. Noguchi,
“Oxygen transport mechanism in Si melt during single
crystal growth in the Czochralski system“, Journal
of Crystal Growth, Vol. 165, pp. 358-361, 1996.
[11] H. Matsuo, R. Ganesh, S. Nakano, L. Liu, K. Arafune,
Y. Ohshita, M. Yamaguchi and K. Kakimoto, “Effect of
crucible rotation on oxygen concentration during
unidirectional solidification process of
multicrystalline silicon for solar cells“, Journal
of Crystal Growth, Vol. 311, pp. 1123-1128, 2009.
[12] J. Kim and T. Lee, “Numerical study of the melt-
thermal e!ect on a silicon crystal in Czochralski
growth system“, Journal of Crystal Growth, Vol. 209,
pp. 55-67, 2000.
[13] H.P. Utech and M.C. Flemings, “Elimination of Solute
Banding in Indium Antimonide Crystals by Growth in a
Magnetic Field“, Journal of Applied Physics, Vol.
37, pp.2021, 1966.
[14] H.A. Chedzey and D.T.J. Hurle, “Avoidance of Growth-
striae in Semiconductor and Metal Crystals grown by
Zone-melting Techniques“, Nature, Vol. 210, pp. 933,
1966.
[15] D.T.J. Hurle, “Handbook of Crystal Growth 2“.
[16] T. Suzuki, N. Isawa, Y. Okubo and K. Hoshi,
Semiconductor Silicon, 1981.
[17] S. Kobayashi, “Effects of an external magnetic field
on solute distribution in Czochralski grown crystals -
a theoretical analysis“, Journal of Crystal Growth,
Vol. 104, pp. 617–628, 1990.
[18] P.S. Ravishankar, T.T. Braggins and R.N. Thomas,
“Impurities in commercial-scale magnetic czochralski
silicon: Axial versus transverse magnetic fields“,
Journal of Crystal Growth, Vol. 104, pp. 617–628,
1990.
[19] M.G. Williams, J.S. Walker and W.E. Langlois, “Melt
motion in a Czochralski puller with a weak transverse
magnetic field “, Journal of Crystal Growth, Vol.
100, pp. 233–253, 1990.
[20] J. Virbulisa, Th. Wetzel, A. Muiznieks, B. Hanna, E.
Dornberger, E. Tomzig, A. Muhlbauer, W.v. Ammon,
“Numerical investigation of silicon melt flow in
large diameter CZ-crystal growth ukder the influence
of steady and dynamic magnetic fields“, Journal of
Crystal Growth, Vol. 230, pp. 92-99, 2001.
[21] A. Krauze, A. Muiznieks, A. Muhlbauer, Th. Wetzel, L.
Gorbunov, A. Pedchenko, J. Virbulis, “Numerical 2D
modelling of turbulent melt flow in CZ system with
dynamic magnetic fields“, Journal of Crystal Growth,
Vol. 266, pp. 40-47, 2004.
[22] A. Krauze, A. Muiznieks, A. Muhlbauer, Th. Wetzel,
W.V. Ammon, “Numerical 3Dmodelling of turbulent melt
flow in large CZ system with horizontal DC magnetic
field—I: flow structure analysis “, Journal of
Crystal Growth, Vol. 262, pp. 157-167, 2004.
[23] A. Krauze, A. Muiznieks, A. Muhlbauer, Th. Wetzel, E.
Tomzig, L. Gorbunov, A. Pedchenko, J. Virbulis,
“Numerical 3Dmodelling of turbulent melt flow in a
large CZ system with horizontal DC magnetic field.
II. Comparison with measurements “, Journal of
Crystal Growth, Vol. 265, pp. 14-27, 2004.
[24] L. Liu, T. Kitashima, K. Kakimoto, “Global analysis
of effects of magnetic field configuration on melt–
crystal interface shape and melt flow in CZ-Si
crystal growth“, Journal of Crystal Growth, Vol.
275, pp.2135-2139, 2005.
[25] L. Liu, K. Kakimoto, “3D global analysis of CZ–Si
growth in a transverse magnetic field with various
crystal growth rates“, Journal of Crystal Growth,
Vol. 275, pp.1521-1526, 2005.
[26] L. Liu, K. Kakimoto, “Partly three-dimensional
global modeling of a silicon Czochralski furnace. II.
Model application: Analysis of a silicon Czochralski
furnace in a transverse magnetic field“,
International Journal of Heat and Mass Transfer, Vol.
48, pp.4492-4497, 2005.
[27] K. Kakimoto, L. Liu, “Partly three-dimensional
calculation of silicon Czochralski growth with a
transverse magnetic field“, Journal of Crystal
Growth, Vol. 303, pp.135-140, 2007.
[28] L. Liu, K. Kakimoto, “Effects of crystal rotation
rate on the melt–crystal interface of a CZ-Si
crystal growth in a transverse magnetic field“,
Journal of Crystal Growth, Vol. 310, pp.306-312, 2008.
[29] Y. H. Honga, B. C. Sim, K. B. Shim, “Effect of zero-
Gauss plane and magnetic intensity on oxygen
concentration in cusp-magnetic CZ crystals“, Journal
of Crystal Growth, Vol. 295, pp.141-147, 2006.
[30] V.V. Kalaev, “Combined effect of DC magnetic fields
and free surface stresses on the melt flow and
crystallization front formation during 400mm diameter
Si Cz crystal growth“, Journal of Crystal Growth,
Vol. 303, pp.203-210, 2007.
[31] 温琬婷,「柴氏法生長單晶矽過程之氧雜質傳輸控制數值分
析」,國立中央大學,碩士論文,民國99年。
[32] J. C. Chen, Y. Y. Teng, W. T. Wun, C. W. Lu, H. I
Chen, C. Y. Chen, W. C. Lan, “Numerical simulation
of oxygen transport during the CZ silicon crystal
growth process “, Journal of Crystal Growth, Vol.
318, pp.318-323, 2011
[33] 鄧應揚,「太陽能多晶矽晶錠固化生長之熱流場與雜質輸送研
究」,國立中央大學,博士論文,民國100年。
[34] Y. Y. Teng, J. C. Chen, C. W. Lu, C. Y. Chen, “The
carbon distribution in multicrystalline silicon
ingots grown using the directional solidification
process“, Journal of Crystal Growth, Vol. 312, pp.
1282-1290, 2010.
指導教授 陳志臣(Jyh-chen Chen) 審核日期 2012-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明