博碩士論文 983209001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.227.97.219
姓名 李岱陽(Tai-Yang Lee)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
(Synthesis and properties of La0.8Sr0.2Mn1−xRuxO3 as cathodes for solid oxide fuel cells )
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用
★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究
★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質
★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)
★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性
★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究★ 銅鎳合金微結構之微電鍍研究
★ 以微電鍍法製備三維銅錫介金屬化合物微結構★ 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文依化學共沉法製備含不同釕組成之La0.8Sr0.2Mn1−xRuxO3 (其中x=0、0.25、0.5、0.75、1.0)固態氧化物,探討其作為燃料電池陰極觸媒之可行性。實驗時,調整釕與錳的比例、前驅粉體的煆燒溫度等因素,研究其形成觸媒時的結晶性質、表面形貌、比表面積、電化學性質等,以評估作為燃料電池陰極的可行性。
利用場發射電子顯微鏡(FE-SEM)、X光能量散佈儀(EDS)觀察觸媒粉體表面形貌與元素,X光繞射光譜儀(XRD)鑑定粉體與觸媒的結晶結構,BET氮氣吸附比表面積測試儀(BET)分析觸媒比表面積,並以感應耦合電漿發射光譜 (ICP-OES)分析含有元素種類與比例。檢視釕與錳的比例、前驅粉體煆燒溫度等變化對所製觸媒在形貌、成分、晶體構造、比表面積比等之影響,以及作為電池陰極之電化學行為之差異。電化學測試包含I-V與電化學阻抗頻譜(EIS),分析電池之歐姆阻抗、電荷轉移阻抗與質傳阻抗。
結果顯示: 0.2 M硝酸前驅溶液經1 M氫氧化鈉滴定共沉後,於1000℃煆燒之粉體,製成電池陰極,由FE-SEM觀察, 顯示為多孔結構,其XRD繞射圖譜含有鑭(La)、鍶(Sr)、錳(Mn)、釕(Ru)之氧化物且為具鈣鈦礦結構之La0.8Sr0.2Mn1−xRuxO3。 隨著釕比例逐漸增加而使氧化物由鈣鈦礦的三方結構轉變為正交結構,由BET數據顯示:此陰極的比表面積隨釕添加量增加而降低。
由全電池I-V極化曲線分析與電化學交流阻抗分析(EIS)可得知劑量比在0.25時,可有效降低氧氣還原反應(ORR)所造成的阻抗,全電池性能較高。
摘要(英) Chemical co-precipitation method was used to prepare the precursor which could be calcined to form La0.8Sr0.2Mn1−xRuxO3 (x = 0, 0.25, 0.5, 0.75, 1.0) as the cathode catalyst materials of the solid oxide fuel cells (SOFC). The effects of stoichiometric ratio between Ru/Mn and calcination temperature on the morphology, crystalline structure of the catalysts and on their specific surface area and cathodic behavior used in SOFC were of interest.
Examination through field emission scanning electron microscope (FE-SEM) equipped with energy dispersive x-ray analysis (EDS), we could compare the morphology and composition for the powders and catalysts. Analysis by x-ray diffraction (XRD), we could distinguish the crystal structures between different types of catalysts. The specific surface area for different catalysts was measured by means of BET adsorption. The specific surface area was derived from different powders varying in Ru/Mn ratios sintered at various temperatures under various ratios of Ru/Mn.
Chemical co-precipitation was carried out by titration a 0.2 M nitrate solution of precursors with 1.0 M sodium hydroxide solution. After filtration, the precursors were dried and calcined at 1000℃ for 5 h. Examination by FE-SEM depicted the calcined oxides are in porous morphology. Through analysis with XRD, we identified the calcined oxides as perovskite structure in which the chemical formula could be La0.8Sr0.2Mn1−xRuxO3 where x varies depending on the ratios of Ru/Mn. The perovskites may shift their crystal structure from trigonal to orthorhombic with increasing x from 0 to 1.0. The specific surface area of the calcined oxides decreases with increasing the Ru-concentration by checking the BET data.
After making the calcined oxides as the cathode catalysts in a single cell, I-V polarization test and electrochemical impedance were conducted to evaluate the electrochemical performance. It was found that performance is the best for the catalyst with x equivalent to 0.25 (i.e., La0.8Sr0.2Mn0.75Ru0.25O3) that with the lowest impedance for the oxygen reduction reaction (ORR).
關鍵字(中) ★ 電化學
★ 氧還原反應
★ 催化劑
★ 陰極
★ 固態氧化物燃料電池
關鍵字(英) ★ Electrochemistry
★ ORR
★ Catalyst
★ Cathode
★ SOFC
論文目次 中文摘要 i
Abstract iii
目錄 i
表目錄 ix
圖目錄 xi
第一章 簡介 1
1.1 研究背景 1
1.2 研究動機與目的 3
第二章 原理與文獻回顧 5
2.1 固態氧化物燃料池(SOFC)原理 5
2.2 固態氧化物燃料電池(SOFC)材料 6
2.2.1 電解質材料 6
2.2.2 陰極材料 8
2.2.3 陽極材料 9
2.3電池材料常用合成法 10
2.4 煆燒(Calcination)與燒結(Sintering)理論 13
2.4.1煆燒的定義 13
2.4.2 燒結的定義 14
2.4.3 燒結的過程與種類 15
2.5電化學原理 17
2.5.1直流電極化(I-V)曲線基本原理 17
2.4.2電化學交流阻抗(EIS)基本原理 19
2.6文獻回顧 23
2.6.1SOFC陰極材料文獻回顧 23
2.6.2電化學交流阻抗文獻回顧 27
第三章 實驗方法 30
3.1實驗藥品與材料 30
3.2樣品製備 30
3.2.1陰極粉體製備 30
3.2.2黏結劑(Binder)與陰極膏(Cathode paste)製備 31
3.2.3全電池製備 32
3.3實驗儀器與設備 33
3.3.1 X光繞射儀(X-Ray Diffractormeter, XRD) 33
3.3.2 場發射電子顯微鏡(FE-SEM) 35
3.3.3 BET比表面積分析 36
3.3.4感應耦合電漿發射光譜分析儀(ICP-OES) 38
3.3.5 直流極化分析(I-V)與交流阻抗分析(EIS) 38
第四章 研究結果 41
4.1陰極粉體 41
4.1.1鈣鈦礦容忍因子 41
4.1.2 粉末XRD分析 41
4.1.3粉末SEM分析 44
4.1.4 BET比表面積分析 48
4.1.5 ICP-OES分析 48
4.2全電池分析 49
4.2.1全電池之陰極表面與斷面SEM 49
4.2.2直流極化分析(I-V) 51
4.2.3交流阻抗分析(EIS) 53
第五章 討論 56
5.1陰極結構特性分析 56
5.1.1晶體結構分析 56
5.1.2表面微結構分析 57
5.2全電池電性分析 58
5.2.1直流極化分析(I-V) 58
5.2.2交流阻抗分析(EIS) 60
第六章 結論與未來展望 62
6.1結論 62
6.2未來展望 63
第七章 參考文獻 64
參考文獻 [1] 衣寶廉,燃料電池-原理與應用,初版,五南,台北市,民國九十四年。
[2] Erwin Povoden-Karadeniz, “Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells”, Swiss Federal Institute Of Technology Zurich, degree of doctor,2008
[3] Karl Harrison, Chemistry, Structures & 3D Molecules @ 3Dchem.com, 2011, 取自http://www.3dchem.com/inorganicmolecule.asp?id=1618
[4] Finn Willy Poulsen, “Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)yMnO3±δ”,Solid State Ionics, Vol.129, p.145-162, 2000
[5] Robert J. Bella et al., “ Influence of synthesis route on the catalytic properties of La1-xSrxMnO3”, Solid State Ionics, Vol.131, p.211-220, 2000
[6] Chonghe Li et al., “Formability of ABO3 perovskites”, Journal of Alloys and Compounds, Vol.372, p.40-48, 2004
[7] Andreja Bencan et al., “The preparation and properties of La3.5Ru4O13 and La2RuO5”, Journal of the European Ceramic Society, Vol.25, p.943-948, 2005
[8] J. Sfeir et al., “Characterization of perovskite powders for cathode and oxygen membranes made by different synthesis routes”, Journal of the European Ceramic Society,Vol.25, p.1991-1995 , 2005
[9] Jian XinWang et al., “Synthesis and properties of (La0.75Sr0.25)0.95MnO3±δ nano-powder prepared via Pechini route”, Journal of Power Sources, Vol.186, p.344-348, 2009
[10] A.K. Sahu et al., “Characterization of porous lanthanum strontium manganite (LSM) and development of yttria stabilized zirconia (YSZ) coating”, Ceramics International, Vol.35, p.2493-2497, 2009
[11] Jungdeok Park et al., “Synthesis and evaluation of nano-size lanthanum strontium manganite–yttria-stablized zirconia composite powders as cathodes for solid oxide fuel cells”, Journal of Power Sources, Vol.195, p.4593-4599, 2010
[12] J.P. Wiff et al., “Improved high temperature performance of La0.8Sr0.2MnO3 cathode by addition of CeO2”, Journal of Power Sources, Vol.196, p.6196-6200, 2011
[13] E.Warburg, Drud.Ann.der physik, Vol.6, p.125, 1901
[14] J.E.B.Randles, Disc Faraday Soc., Vol.1, p.11, 1974
[15] J. H. Sluyters, M. Sluyter-Rehbach, Marcel Dekker, New York, J. Electroanal. Chem., Vol.4 , 1970
[16] J. H. Sluyters, M. Sluyter-Rehbach, “Comprehensive Treatise of Electrochemistry”, Plenum, New York, Vol.9, p.177, 1984
[17] Qiu-An Huang et al., “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, Vol.52, p.8144-8164, 2007
[18] J. Nielsen et al., “SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study”, Solid State Ionics, Vol.189, p.74-81, 2011
[19]R. D. Shannon et al., “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides”, Acta Crystallographica, Vol.32, p.751-767, 1976
指導教授 林景崎、邱善得
(Jing-Chie Lin、San-Der Chyou)
審核日期 2011-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明