博碩士論文 983209008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.14.247.231
姓名 蔡旻錡(Ming-chi Ysai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
(The Effects of Growth Temperatures and Ligand Ratios on the Optical Properties of ZnCdSe Quantum Dots)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係★ 不同形貌硒化鎘奈米晶之製備及其於有機光伏元件之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 半導體量子點材料因具有廣泛的發光波長與高量子效率,其製備與改質的研究已引起廣泛討論。與傳統的螢光染料相較,量子點有集中的光譜、連續的吸收光譜以及高的量子效率,使它們更適合做為螢光材料。其中II-VI族的合金量子點可由組成比例控制其波長,並具有較其他量子點更強的晶格結構而受到重視。近年的研究多致力於發展其應用,卻少有研究嘗試以提高結晶度、改變配位體比例來進一步提升量子點的光學性質。
在本研究中,高品質的ZnCdSe合金量子點經由高溫有機金屬製程來合成。量子點在成核、成長反應後快速冷卻至較低的溫度(100-250 oC)中退火,並觀察其光學性質的變化狀況。製程中以被廣泛利用的十六胺(HDA)與三正辛基氧磷(TOPO)為配位體,探討兩者比例對於量子點光學性質的影響。所製備ZnCdSe量子點的尺寸大小、結構、組成比例、表面化學鍵結、量子效率與光學性質分別以高解析穿透式電子顯微鏡(HRTEM)、X光繞射分析儀(XRD)、感應耦合電漿原子發射光譜分析儀(ICP-AES)、傅立葉紅外線光譜儀(FTIR)、紫外光可見光吸收光譜儀(UV-vis)與螢光光譜儀(FL)作系統性的分析。
實驗中發現,配位體的比例和溫度皆會對波長與量子效率造成極大影響。在320 oC下,隨著HDA比例由0增加到100 %,放射波長由590 藍移至520 nm;而在270 oC下,同樣的條件卻使波長由504 紅移至543 nm。另外當HDA含量由0增加到75 %時,ZnCdSe的量子效率可由<1變化到80 % 之多。此現象源自TOPO與HDA不同的空間障礙。在原子組成方面,當未使用HDA於製程中時,量子點中的鋅原子比例顯著地由35-56 % 下降至15-19 %。
當ZnCdSe量子點在成核、成長之後,並降到100-250 oC進行熱處理一段時間則會使量子效率有明顯的提升。在不同的熱處理溫度比較中,150 oC熱處理可最大效率地提升發光效率,其量子效率由80提升至95 %並保持固定的放射波長。同一樣品在52天的儲存過程中保有的發光效率也大於未經熱處理ZnCdSe量子點。此外,FTIR的分析發現量子點表面配位體的比例與製程中所加入的配位體比例一致,在儲存過程中表面的配位體比例也幾乎不隨時間改變。
摘要(英) The preparation and modification of semiconductor quantum dots (QDs) are very attractive research topics due to their wide range of emission wavelength and high quantum yield (QY). Compared to the traditional fluorescent dyes, QDs have narrow emission peak, continuous absorption spectrum, and high QY, which make QDs as appropriate fluorescence materials. II-VI group alloyed QDs with tunable emission wavelength which can be changed by controlling their compositions, and stronger lattice structure than other QDs, are studied recently. In these years, studies have been focused on their applications. Few attentions have been paid on the optimization through increasing crystallinity or changing the ligands ratio during the preparation of QDs.
In the study, high quality ZnCdSe QDs are synthesized by the high temperature organometallic procedure. QDs are soon cooled down to lower temperature (100-250 oC) and annealed after nucleation and growth. The variations on optical properties are observed in the process. The widely used Hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) are chosen for the ligands in the procedure, and the effect of ligands ratio is also investigated in the study. Their particle sizes, structures, compositions, surface chemical states, QYs and optical properties are systemically analyzed by high resolution spectrometer (HRTEM), X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometer (ICP-AES), Fourier transform infrared spectroscopy (FTIR), UV-visible absorption spectroscopy (UV-vis), and fluorescence spectroscopy (FL), respectively.
It is found that the ligands ratios and temperatures both significantly influence the emission wavelength and QY of the QDs. While HDA ratio raises from 0 to 100 %, emission wavelength blue-shifts from 590 to 520 nm in 320 oC but red-shifts from 504 to 543 nm in 270 oC. Additionally, when HDA content increases from 0 to 75 %, the variation on QY of ZnCdSe QDs changes from <1 to 80 % due to the different steric hindrance of TOPO and HDA. In terms of atomic compositions, the ratio of zinc atoms obviously decreases from 35-56 mol% to 15-19 mol% when HDA is absence in the procedure.
The QY has obvious enhancement if QDs are annealed in 100-250 oC for a period of time after the nucleation and growth. For the samples annealed at various temperatures, annealing process in 150 oC can most effectively enhance the emission efficiency with an increase of QY from 80 to 95 % without changes of emission wavelength. The sample also maintains a better QY performance during the 52 day storage. Besides, it is found that the ratio of surface ligands is proportional to the ligands ratio initially added in the procedure, and is almost unchanged with storage time.
關鍵字(中) ★ 量子點
★ 十六胺
★ 三正辛基氧磷
★ 有機金屬製程
★ 退火
★ 量子效率
★ 硒化鋅鎘
關鍵字(英) ★ ZnCdSe
★ quantum dots
★ HDA
★ TOPO
★ organometallic procedure
★ annealing
★ QY
論文目次 摘要
Abstract
致謝
Table of Contents
List of Figures
List of Tables
Chapter I Introduction
1.1 Fluorescence Mechanisms of Semiconductor Materials
1.2 Ternary Alloyed ZnCdSe QDs
1.2.1 History of the ternary ZnCdSe alloyed QDs
1.2.2 Characteristics of ZnCdSe QDs
1.3 Ligands Effect
1.3.1 Surface passivation
1.3.2 Surface ligand dynamics
1.4 Annealing
1.5 Effect of Aging
1.6 Motivation and Approach
Chapter ІІ Experimental Procedure
2.1 Chemicals and Materials
2.2 Synthesis of ZnCdSe QDs
2.2.1 Synthesis of ZnCdSe
2.2.2 Annealing process of ZnCdSe QDs
2.3 Characterization of QDs
2.3.1 Transmission electron microscopy (TEM)
2.3.2 X-ray diffraction (XRD)
2.3.3 Inductively coupled plasma-atomic emission spectrometer (ICP-AES)
2.3.4 UV-visible absorption spectroscopy (UV-vis)
2.3.5 Fluorescence (FL)
2.3.6 Quantum yield (QY)
2.3.7 Stability of photoluminescence properties
2.3.8 Fourier transform infrared spectroscopy (FTIR)
Chapter III Results and Discussion
3.1 The Effect of Ligand Ratios on Different Temperatures
3.1.1 TEM observation of ZnCdSe QDs
3.1.2 The compositions of ZnCdSe QDs
3.1.3 XRD analysis of ZnCdSe QDs
3.1.4 Surface states of ZnCdSe QDs
3.1.5 The optical properties of ZnCdSe QDs
3.1.6 Summary
3.2 The Effect of Annealing
3.2.1 The annealing in different temperatures
3.2.2 Summary
3.3 The Decay Resistance of Annealed Samples
3.3.1 Surface chemical states of annealed samples changed with storage time
3.3.2 Decay resistance in different annealing temperatures
3.3.3 Summary
Chapter ІV Conclusions
References
參考文獻 [1] R. E. Galian, M. D. L. Guardia, TrAC, Trends Anal. Chem.28 (2009) 279.
[2] S. Sapra, D. D. Sarma, Phys. Rew. B 69 (2004) 125304.
[3] M. A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100 (1996) 468.
[4] X. Zhong, M. Han, Z. Dong, T. J. White, W. Knoll, J. Am. Chem. Soc. 125 (2003) 8589.
[5] X. Zhong, Z. Zhang, S. Liu, M. Han, W. Knoll, J. Phys. Chem. B 108 (2004) 15552.
[6] H. Lee, H. Yang, P. H. Holloway, J. Lumin. 126 (2007) 314.
[7] S. A. Santangelo, E. A. Hinds, V, A. Vlaskin, P, I. Archer, D, R. Gamelin, J. Am. Chem. Soc. 129. (2007) 1973.
[8] F. C. Liu, T.L. Cheng, C. C. Shen, W. L. Tseng, M. Y. Chiang, Langmuir 24 (2008) 2162.
[9] C. Blanco-Andujar, L. D. Tung, N. T. K. Thanh. Annu. Rep. Prog. Chem. Sect. A 106 (2010) 553.
[10] C. C. Shen, W. L. Tseng, Inorg. Chem. 48 (2009) 8689.
[11] M. Protiere, P. Reiss, Small 3 (2007) 399.
[12] A. Eychmuller, J. Phys. Chem. B 104 (2000) 6514.
[13] C. N. R. Rao, P. J. Thomas, G. U. Kulkarni, “Nanocrystals: Synthesis, Properties, and Applications”, Springer-Verlag Berlin Heidelberg 2007.
[14] C. Bullen, P. Mulvaney, Langmuir 22 (2006) 3007.
[15] A. Smith, S, Nie, Acc. Chem. Res. 43 (2010) 190.
[16] D. F. Underwood, T. Kippeny, S. J. Rosenthal, J. Phys. Chem. B 105 (2001) 436.
[17] M. G. Bawendi, P. J. Carroll, W. L. Wilson, L. E. Brus, J. Chem. Phys. 96 (1992) 946.
[18] J. Y. Jen, C. Y. Lin, J. R. Lee, C. R. Lu, J. Phys. Chem. Solids 69 (2008) 485.
[19] W. Kim, S. J. Lim, S. Jung, S. K. Shin, J. Phys. Chem.C 114 (2010) 1539.
[20] J. Embden, P. Mulvaney, Langmuir 21 (2005) 10226.
[21] N. Pradhan, D. Reifsnyder, R. Xie, J. Aldana, X. Peng, J. Am. Chem. Soc. 129 (2007) 9500.
[22] W.W. Yu, Y. A. Wang, X. Peng, Chem. Mater. 15 (2003) 4300.
[23] W. Wang, S. Banerjee, S. Jia, M. L. Steigerwald, I. P. Herman, Chem. Mater. 19 (2007) 2573.
[24] X. Chen, A. C. S. Samia, Y. Lou, C. Bruda, J. Am. Chem. Soc.127 (2005) 4372.
[25] K. Leung, K. B. Whaley, J. Phys. Chem. C 112 (2008) 20413.
[26] S. Wageh, L. Shu-Man, X. Xu-Rang, Physica E 16 (2003) 169.
[27] A. P. Alivistos, J. Phys. Chem. 100 (1996) 13226.
[28] M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller, U. Resch-Genger, Anal. Chem. 81 (2009) 6285.
[29] P. D. Cozzoli, M. L. Curri, A. Agostiano, J. Phys. Chem. B 107 (2003) 4756.
[30] L. Manna, E. C. Scher, L. S Li, A. P. Alivisatos, J. Am. Chem. Soc. 124 (2002) 7136.
[31] M. A. Hines, P. Guyot-Sionnest, J. Phys. Chem. B 102 (1998) 3655.
[32] Z. A. Peng, X. Peng, J. Am. Chem. Soc.124 (2002) 3343.
[33] D. V. Talapin, A. L. Rogash, A. Komowski, M. Haase, H. Weller, Nano Lett. 1 (2001) 207.
[34] Z. Deng, L. Cao, F. Tang, B. Zou, J. Phys. Chem. B 109 (2005) 16671.
[35] S. N. Sharma, H. Sharma, G. Singh, S. M. Shivaprasad, Mater. Chem. Phys. 110 (2008) 471.
[36] K.Nakanishi, “ Infrared Absorption Spectroscopy”, Tokyo Kyoiku University 1971.
[37]M. George, R. G. Weiss, J. Am. Chem. Soc. 123 (2001) 10393.
[38]J. K. Cooper, A. M. Franco, S. Gul, C. Corrado, J. Z. Zhang, Langmuir received, dx.doi.org/10.1021/la201273x.
[39]L. Xu, L. Wang, X. Huang, J. Zhu, H. Chen, K. Chen, Physica E 8 (2000) 129.
[40] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 404 (2000) 59.
[41] M. B. Mohamed, D. Tonti, A. Al-Salman, A. Chemseddine, M. Chergui, J. Phys. Chem. B 109 (2005) 10533.
[42] E. E. Foos, J. Wilkinson, A. J. Makinen, N. J. Watkins, Z. H. Kafari, J. P. Long, Chem. Mater. 18 (2006) 2886.
[43] L. Qu, W. Yu, X. Peng, Nono Lett. 4 (2004) 465.
[44] E. R. Leite, T. R. Giraldi, F. M. Pontes, E. Longo, A. BeltraAn, J. Andreas, Appl. Phys. Lett. 83 (2003) 1566.
[45] L. Qu, X. Peng, J. Am. Chem. Soc. 124 (2002) 2049.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2011-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明