博碩士論文 983209009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.231.229.89
姓名 林依頻(Yi-Ping Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鉑矽化物於矽碳磊晶層上生成行為及其熱穩定性之探討
(Effects of Platinum Silicide Formation on Si1-yCy Epitaxial Layers and Thermal Stability)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 氫離子佈植對矽鍺/矽異質結構應變釋放之研究及矽鍺奈米線之製作★ 利用原子力顯微鏡結合選擇性化學蝕刻法分析自組裝矽鍺量子點成分分佈之研究
★ 利用新穎奈米遮罩製備低維度矽鍺奈米結構及其光電性質之研究★ 利用奈米球微影術與金輔助化學蝕刻法形成矽鍺奈米柱陣列之研究
★ 第三元素對於鎳矽化物形成於矽及矽碳基板之影響★ 應用於太陽光電之自潔性及低反射率之矽與矽鍺奈米孔洞陣列
★ 奈米結構化氧化鋁鋅薄膜之製作與光電性質研究★ 離子佈植對鎳合金矽化物之影響
★ 以靜電紡絲技術製備二氧化鈦奈米纖維之研究★ 二氧化鈦基表面增強拉曼基板之製作與檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在互補式金氧半電晶體元件尺寸日益縮小的趨勢下,自我對準金屬矽化物製程相關技術也日漸重要。近幾年來矽碳磊晶層被認為是未來極具潛力的汲極/源極材料,而要成功的整合矽碳磊晶層到標準元件製程流程裡,可靠的金半接觸對於矽碳磊晶層在汲極/源極的應用是必要的。鉑矽化物因具有較低的蕭基能障,可應用於蕭基電晶體上,但也同樣遇到熱穩定性較不佳的問題。因此,本研究嘗試使用矽碳磊晶層來改善鉑矽化物之熱穩定性,進一步探討鉑矽化物形成於矽碳磊晶層上之生成行為影響。研究發現鉑矽化物系統中有不可避免之原生氧化層存在,而鉑矽化物的生成必頇透過氧化層中的孔洞來進行反應。在有添加碳的系統中發現,碳原子不但降低PtSi相生成的速率也提高了鉑矽化物的熱穩定性。另外,添加碳也使PtSi較不易產生結塊的情形,同時也寬化了鉑矽化物的製程溫度窗。另一方面,有添加碳原子的試片即使經過長時間的退火其也均還保持相當良好的熱穩定性。
近幾年來,通道應變工程已成為最具潛力的技術。而其中,矽碳磊晶層之熱穩定的研究逐漸成為一研究的課題。因此,本研究中嘗試利用晶格應變技術分析矽碳磊晶層試片在經過退火過後其應變分佈的情況。研究發現矽碳磊晶層試片在剛開始退火階段其應變會增加,在退火800℃時矽碳磊晶層中碳原子濃度會增加0.1%,藉由應變晶格分析觀察到退火過後之矽碳磊晶層中應變強度愈靠近試片表面的地方愈大,推測是由於較慢成長之矽碳磊晶層中空孔較多使得位在間隙位置上的碳原子會佔據在取代位置上,導致碳原子濃度增加及應變的強度增加。另外當退火溫度再增高至900℃時應變會被釋放,推測是由於碳析出形成含有碳之間隙化合物所造成。
摘要(英) Strain engineering is commonly used for improving the performance of metal-oxide-semiconductor (MOS) devices. For example, n-channel MOS (NMOS) devices with silicon-carbon  (Si1-yCy) grown in the source and drain (S/D) regions as uniaxial compressive stressors for the channel can achieve significant drive current improvements. However, successfully integrating Si1-yCy epilayers into a standard device process flow requires reliable metal-silicide contacts in the Si1-yCy S/D regions. Pt silicide formed on p-type silicon has a low Schottky barrier height, which useful as Schottky transistors. However, Pt silicide has poor thermal stability. In this study, the reaction between Pt and Si1-yCy epilayers with an interfacial oxide layer was investigated. Pt silicide has inevitable oxide layer, which as a diffusion barrier layer. During the silicidation, Pt atoms diffused to react with Si through the oxide pinholes. C atoms play a critical role in Pt silicide microstructure and reaction. The presence of C atoms retards the growth kinetics of PtSi and significantly enhances the thermal stability of PtSi thin films. In addition, C atoms suppressed PtSi agglomeration and widened the process window of low-resistivity PtSi silicides. On the other hand, the thermal stability of Pt silicides in the Pt/Si1-yCy samples was found to be significantly improved, even after long-time annealing at 800 ℃. 
In recently years, channel strain has been becoming a promise technique. Strain distribution with different depth of annealed Si1-yCy epilayers using lattice strain analysis were investigated in this study. At the initial stage of annealing, the strain of Si1-yCy epilayers increased. The Cs increased 0.001 in the Si1-y2Cy2 epilayers sample annealed at 800 ℃. Lattice strain analysis was performed using high-resolution transmission electron microscopy (HRTEM) and diffractograms obtained by fast Fourier transform of HRTEM images. The magnitude of compressive strain was larger towards Si1-y2Cy2 epilayers sample surface. It speculates that C atoms at interstitial sites were incorporated into substitutional sites after annealing, resulting in Cs and strain increment. In addition, no strain relief by the introduction of misfit dislocations was detectible in the Si1-y2Cy2 epilayers sample after annealing 900℃, possibility due to the formation of carbon-containing interstitial complexes.
關鍵字(中) ★ 矽化物
★ 矽碳磊晶層
★ 熱穩定性
★ 鉑
關鍵字(英) ★ Platinum
★ Silicide
★ Epi-SiC
★ Thermal Stability
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 矽碳磊晶層異質結構之介紹 2
1.2.1 材料基本特性 2
1.2.2 互補式金氧半導體通道應變之應用 5
1.3 金屬矽化物 8
1.3.1 自我校準金屬矽化物製程技術發展 8
1.3.2金屬矽化物的選擇 10
1.3.3 鈦/矽系統 10
1.3.4 鈷/矽系統 11
1.3.5 鎳/矽系統 15
1.3.6 鉑/矽系統 17
參考文獻 20
第二章 實驗方法 26
2.1 四點探針(four point probe) 26
2.2 高解析X光繞射儀(high resolution X-ray diffractometer, HRXRD) 27
2.3 穿透式電子顯微鏡 (transmission electron microscopy, TEM) 28
2.4 X光光電子能譜儀(X-ray photoelectron spectrometer, XPS) 28
2.5 二次離子質譜儀(secondary ion mass spectrometry, SIMS) 29
2.6 拉曼光譜儀(Raman spectroscopy) 29
第三章 熱退火處理之矽碳磊晶層異質結構之應變分析 31
3.1 研究動機 31
3.2 研究方法 32
3.3 結果與討論 33
3.4 結論 43
參考文獻 44
第四章 鉑矽化物於矽碳磊晶層上生成行為之探討 46
4.1 研究動機 46
4.2 實驗方法 47
4.3結果與討論 48
4.4 結論 57
參考文獻 58
第五章 總結 60
5.1熱退火處理之矽碳磊晶層異質結構之應變分析 60
5.2鉑矽化物於矽碳磊晶層上生成行為之探討 60
第六章 未來研究 62
參考文獻 64
參考文獻 1.1 G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics 38, (1965).
1.2 M. Y. Tairov, and V. F. Tsvetkov, “Handbook on Electro technical Materials” Eds. Y. V. Koritskii, V. V. Pasynkov, and B. M. Tareev, Vol.3, Sec.19, "Semiconductor Compounds AIV BIV", Energomashizdat, Leningrad (1988) p. 446.
1.3 M. Berti, D. D. Salvador, A. V. Drigo, F. Romanato, J. Stangl, S. Zerlauth, F. Schäffler, and G. Bauer, “Lattice Parameter in Si1-yCy Epilayers: Deviation from Vegard’s Rule,” Appl. Phys. Lett. 72, 1602-1604 (1998).
1.4 S. M. Koh, X. Wang, K. Sekar, W. Krull, G. S. Samudra, and Y. C. Yeo, “Silicon-Carbon Formed Using Cluster-Carbon Implant and Laser-Induced Epitaxy for Application as Source/Drain Stressors in Strained n-Channel MOSFETs,” J. Electrochem. Soc. 156, H361-H366 (2009).
1.5 P. C. Kelires, “Short-Range Order, Bulk Moduli, and Physical Trends in c-Si1-xCx Alloys,” Phys. Rev. B, 55, 8784 (1997).
1.6 F. Andrieu, O. Weber, T. Ernst, O. Faynot, and S. Deleonibus, “Strain and Channel Engineering for Fully Depleted SOI MOSFETs towards the 32 nm Technology Node,” Microelectron. Eng. 84, 2047-2053 (2007).
1.7 S. H. Olsen, P. Dobrosz, R. M. B. Agaiby, Y. L. Tsang, O. Alatise, S. J. Bull, A. G. O’Neill, K. E. Moselund, A. M. Ionescu, P. Majhi, D. Buca, S. Mantl, and Howard Coulson, “Nanoscale Strain Characterisation for Ultimate CMOS and Beyond,” Materials Science in Semiconductor Processing, 11, 271-278 (2008).
1.8 M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, “Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs,” Annu. Rev. Mater. Res. 39, 203-229 (2009).
1.9 J. Jung, M. L. Lee, S. Yu, E. A. Fitzgerald, and D. A. Antoniadis, “Implementation of Both High-Hole and Electron Mobility in Strained Si/Strained Si1-yGey on Relaxed Si1-xGex (x < y) Virtual Substrate,” IEEE Electron. Dev. Lett. 24, 460-462 (2003).
1.10 K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si n-MOSFET’s,” IEEE Trans. Electron Devices, 47, 1406 (2000). 
1.11 G. Eneman, P. Verheyen, R. Rooyackers, F. Nouri, R. Schreutelkamp, V. Moroz, L. Smith, M. Jurczak, and K. D. Meyer, “Scalability of the Si1−xGex Source/Drain Technology for the 45-nm Technology Node and Beyond,” IEEE Trans. Electron Devices, 53, 1647-1656 (2006).
1.12 R. E. Belford, “Uniaxial, Tensile-Strained Si Devices,” J. Electron. Mater. 30, 807-811 (2001).
1.13 S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. E.-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon,” IEEE Trans. Electron Devices, 51, 1790-1797 (2004).
1.14 Y. C. Yeo, “Enhancing CMOS Transistor Performance Using Lattice-Mismatched Materials in Source/Drain Regions,” Semicond. Sci. Technol. 22, S177-S182 (2007). 
1.15 K. J. Chui, K. W. Ang, M. F. Li, G. S. Samudra, and Y. C. Yeo, “N-MOSFET With Silicon–Carbon Source/Drain for Enhancement of Carrier Transport,” IEEE Trans. Electron Devices, 54, 249-256 (2007).
1.16 M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. Iwai, “Sub-50 nm Gate Length N-MOSFETs with 10 nm Phosphorus Source and Drain Junctions,” Electron Devices Meeting, 1993. IEDM '93. Technical Digest., International, 119 (1993).
1.17 H. Iwaia , T. Ohguro, and S. I. Ohmi, “NiSi Salicide Technology for Scaled CMOS,” Microelectron. Eng. 60, 157-169 (2002).
1.18 J. A. Kittl, Q. Z. Hong, H. Yang, N. Yu, S. B. Samavedam, and M. A. Gribelyuk, “Advanced Salicides for 0.10 mm CMOS: Co Salicide Processes with Low Diode Leakage and Ti Salicide Processes with Direct Formation of Low Resistivity C54 TiSi2,” Thin Solid Films, 332, 404-411 (1998). 
1.19 S. P. Murarka, “Silicide Thin Films and Their Applications in Microelectronics,” Intermetallics, 3, 173 (1995).
1.20 J. C. Barbour, A. E. M. J. Fischer, and J. F. v. d. Veen, “The Thin-Film Reaction between Ti and Thermally Grown SiO2,” J. Appl. Phys. 62, 2582 (1987).
1.21 J. A. Kittl, and Q.Z. Hong, “Self-Aligned Ti and Co Silicides for High Performance Sub-0.18 mm CMOS Technologies,” Thin Solid Films, 320, 110-121 (1998).
1.22 G. L. Miles, R. W. Mann, and J. E. Bertseh, “TiSi2 Phase Transformation Characteristics on Narrow Devices,” Thin Solid Films, 290, 469 (1996). 
1.23 A. Lauwers, Q. F. Wang, B. Deweerdt, and K. Maex, “Ti/Co Bilayers in Salicide Technology Electrical Evaluation,” Appl. Surf. Sci. 91, 12 (1995).
1.24 S. Buschbaum, O. Fursenko, D. Bolze, D. Wolansky, V. Melnik, J. Nies, and W. Lerch, ” Effects of Various Co/TiN and Co/Ti Layer Stacks and the Salicide Rapid Thermal Process Conditions on Cobalt Silicide Formation,” Microelectron. Eng. 76, 311-317 (2004).
1.25 T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, Y. Katsumata, and H. Iwai, “Self-Aligned Nickel-Mono-Silicide Technology for High-Speed Deep Submicrometer Logic CMOS ULSI,” IEEE Trans. Electron Devices, 42, 915-922 (1995).
1.26 D. X. Xua, S. R. Dasa, C. J. Peters, and L. E. Erickson, “Material Aspects of Nickel Silicide for ULSI Applications,” Thin Solid Films, 326, 143-150 (1998).
1.27 P. Revesz, L. R. Zheng, L. S. Hung, and J. W. Mayer, “Morphological Degradation of TiSi2 on (100) Silicon,” Appl. Phys. Lett. 48, 1591 (1986).
1.28 F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan, “Thermal Stability Study of NiSi and NiSi2 Thin Films,” Microelectron. Eng. 71, 104-111 (2004).
1.29 D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of Thermal Stability of NiSi Films on (100)Si and (111)Si by Pt Addition,” Appl. Phys. Lett. 75, 1736-1738 (1999). 
1.30 C. Detavernier, and C. Lavoie, ”Influence of Pt Addition on the Texture of NiSi on Si(001),” Appl. Phys. Lett. 84, 3549-2551 (2004).
1.31 R. N. Wang, J. Y. Feng, and Y. Huang, “Mechanism about Improvement of NiSi Thermal Stability for Ni/Pt/Si(111) Bi-Layered System,” Appl. Surf. Sci. 207, 139-143 (2003).
1.32 H. Norde, J. d. Pires, F. d’Heurle, F. Pesavento, S. Petersson, and P. A. Tove, “The Schottky-Barrier Height of the Contacts between Some Rare-Earth Metals (and Silicides) and P-type Silicon,” Appl. Phys. Lett. 38, 865-866 (1981).
1.33 C. J. Choi, S. Y. Chang, S. J. Lee, Y. W. Ok, and T. Y. Seong, “Thickness Effect of a Ge Interlayer on the Formation of Nickel Silicides,” J. Electrochem. Soc. 154, H759-H763 (2007).
1.34 O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, “Improvement in NiSi/Si Contact Properties with C-Implantation,” Microelectron. Eng. 82, 479-484 (2005).
1.35 V. Machkaoutsan, S. Mertens, M. Bauer, A. Lauwers, K. Verheyden, K. Vanormelingen, P. Verheyen, R. Loo, M. Caymax, S. Jakschik, D. Theodore, P. Absil, S. G. Thomas, and E. H. A. Granneman., “Improved Thermal Stability of Ni-Silicides on Si:C Epitaxial Layers,” Microelectron. Eng. 84, 2542-2546 (2007).
1.36 P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, A. T. S. Wee, and L. Chan, “Improved NiSi Salicide Process using Presilicide N2+ Implant for MOSFETs,” IEEE Electron. Dev. Lett, 21, 566-568 (2000).
1.37 L. E Tanner, and H. Okamoto, “The Pt-Si (Platinum-Silicon) System,” J. Phase Equil. 12, 571-574 (1991).
1.38 G. Larrieu, E. Dubois, X. Wallart, X. Baie, and J. Katcki, “Formation of  Platinum-Based Silicide Contacts: Kinetics, Stoichiometry, and Current Drive Capabilities,” J. Appl. Phys. 94 7801-7810 (2003).
1.39 A. A. Neam, “Platinum Silicide Formation using Rapid Thermal Processing,” J. Appl. Phys. 64, 4161-4167 (1988).
1.40 H. Takai, P. A. Pasaras, and K. N. Tu, “Effects of Substrate Crystallinity and Dopant on the Growth Kinetics of Platinum Silicides,” J. Appl. Phys. 58, 4165-4171 (1985).
1.41 C. A. Chang, “PtSi Contact Metallurgy: Comparison of Different Annealing Sequences, Annealing Time and Ambients, and Deposition Techniques of Pt,” J. Appl. Phys. 59, 3116-3121 (1986).
1.42 F. Nava, S. Valeri, G. Majni, A. Cembali, G. Pignatel, and G. Queirolo, “The Oxygen Effect in the Growth Kinetics of Platinum Silicides,” J. Appl. Phys. 52, 6641-6646 (1981).
1.43 E. Conforto, and P. E. Schmid, “Platinum Silicide Phase Transformations Controlled by a Nanometric Interfacial Oxide Layer,” Thin Solid Films, 516, 7467-7474 (2008).
1.44 C. A. Chang, “Formation of Pt Silicides: The Effect of Oxygen,” J. Appl. Phys. 58, 1412-1414 (1985).
3.1 S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon,” IEEE Trans. Electron Devices, 51, 1790-1797 (2004).
3.2 T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffiann, K. Johnson, C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors,” IEDM Tech. Dig. 978-980 (2003).
3.3 S. H. Olsen, P. Dobrosz, R. M. B. Agaiby, Y. L. Tsang, O. Alatise, S. J. Bull, A. G. O’Neill, K. E. Moselund, A. M. Ionescu, P. Majhi, D. Buca, S. Mantl, and H. Coulson, “Nanoscale Strain Characterisation for Ultimate CMOS and Beyond,” Materials Science in Semiconductor Processing, 11, 271-278 (2008).
3.4 M. Bauer, V. Machkaoutsan, Y. Zhang, D. Weeks, J. Spear, S. G. Thomas, P. Verheyen, C. Kerner, F. Clemente, H. Bender, D. Shamiryan, R. Loo, A. Hikavyy, T. Hoffmann, P. Absil, and S. Biesemans, “SiCP Selective Epitaxial Growth in Recessed Source/Drain Regions Yielding to Drive Current Enhancement in N-Channel MOSFET,” ECS transcation, 16, 1001-1013, (2008).
3.5 K. Abe, A. Yamada, and M. Konagai, “Characterization of Epitaxial Si1-yCy Layers on Si(001) Grown by Gas-Source Molecular Beam Epitaxy,” Journal of Crystal Growth, 251, 681-684 (2003).
3.6 P. Warren, J. Mi, F. Overney, and M. Dutoit, “Thermal Stability of Si/Si1-x-yGexCy/Si Heterostructures Grown by Rapid Thermal Chemical Vapor Deposition,” Journal of Crystal Growth, 157, 414-419 (1995).
3.7 S. Zerlauth, C. Penn, H. Seyringer, J. Stangl, G. Brunthaler, G. Bauer, and F. Schäffler, “Molecular Beam Epitaxial Growth and Photoluminescence Investigation of Si1-yCy Layers,” Journal of Crystal Growth, 321, 33-40 (1998).
3.8 H. J. Osten, J. Griesche, and S. Scalese, “Substitutional Carbon Incorporation in Epitaxial Si1-yCy Alloys on Si(001) Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 74, 836-838 (1999).
3.9 M. Bauer, V. Machkaoutsan, and C. Arena, “Highly Tensile Strained Silicon–Carbon Alloys Epitaxially Grown into Recessed Source Drain Areas of NMOS Devices,” Semicind. Sci. Technol. 22, S183-S187 (2007).
3.10 G. G. Fischer, P. Zaumseil, E. Bugiel, and H. J. Osten, “Investigation of the High Temperature Behavior of Strained Si1-yCy/Si Heterostructures,” J. Appl. Phys. 77, 1934-1937 (1995).
3.11 H. J. Osten, D. Endisch, E. Dietrich, G. G. Fischer, M. Kim, D. Kruger, and P. Zaumseil, “Strain Relaxation in Tensile-Strained Si1-yCy layers on Si(001),” Semicind. Sci. Technol. 11, 1678-1687 (1996).
3.12 M. W. Dashiell, L. V. Kulik, D. Hits, J. Kolodzey, and G. Watson, “Carbon Incorporation in Si1-yCy Alloys Grown by Molecular Beam Epitaxy using A Single Silicon–Graphite Source,” Appl. Phys. Lett. 72, 833-835 (1998).
3.13 K. W. Ang, K. J. Chui, V. Bliznetsov, C. H. Tung, A. Du, N. Balasubramanian, G. Samudra, M. F. Li, and Y. C. Yeo, “Lattice Strain Analysis of Transistor Structures with Silicon–Germanium and Silicon–Carbon Source/Drain Stressors,” Appl. Phys. Lett. 86, 093102 (2005).
4.1 K. Rim, J. L. Hoyt, and L. F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET's,” IEEE Trans. Electron Devices 47, 1406-1415 (2000).
4.2 H. C. Chen, C. W. Wang, S. W. Lee, and L. J. Chen, “Pyramid-Shaped Si-Ge Superlattice Quantum Dots with Strong Photoluminescence Properties,” Adv. Mater. 18, 367-370 (2006).
4.3 X. Fan, G. Zeng, C. LaBounty, J. E. Bowers, E. Croke, C. C. Ahn, S. Huxtable, A. Majumdar, and A. Shakouri, “SiGeC/Si Superlattice Microcoolers,” Appl. Phys. Lett. 78, 1580-1582 (2001).
4.4 M. Sinha, E. F. Chor, and C. F. Tan, “Schottky Barrier Height Tuning of Silicide on Si1−xCx,” Appl. Phys. Lett. 91, 242108 (2007).
4.5 K. W. Ang, K. J. Chui, V. Bliznetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, and Y. C. Yeo, “Enhanced Performance in 50 nm n-MOSFETs With Silicon-Carbon Source/Drain Regions”, Tech. Dig.-Int. Electron Devices Meet., 1069 (2004).
4.6 G. Larrieu, E. Dubois, X. Wallart, X. Baie, and J. Katcki, “Formation of  Platinum-Based Silicide Contacts: Kinetics, Stoichiometry, and Current Drive Capabilities,” J. Appl. Phys. 94 7801-7810 (2003).
4.7 A. A. Neam, “Platinum Silicide Formation using Rapid Thermal Processing,” J. Appl. Phys. 64, 4161-4167 (1988).
4.8 H. Takai, P. A. Pasaras, and K. N. Tu, “Effects of Substrate Crystallinity and Dopant on the Growth Kinetics of Platinum Silicides,” J. Appl. Phys. 58, 4165-4171 (1985).
4.9 Y. Roichman, A. Berner, R. Brener, C. Cytermann, D. Shilo, E. Zolotoyabko, M. Eizenberg, and H. J. Osten, “Co Silicide Formation on Epitaxial Si1−yCy/Si (001) Layers,” J. Appl. Phys. 87, 3306-3312 (2000).
4.10 S. W. Lee, S. H. Huang, S. L. Cheng, P. S. Chen, and W. W. Wu, “Ni Silicide Formation on Epitaxial Si1-yCy/(001) Layers,” Thin solid films, 518, 7394-7397 (2010).
4.11 K. D. Keyser, B. D. Schutter, C. Detavernier, V. Machkaoutsan, M. Bauer, S. G. Thomas, J. J. Sweet, and C. Lavoie, “Phase Formation and Texture of Nickel Silicides on Si1-xCx Epilayers,” Microelectron. Eng. 88, 536-540 (2011).
4.12 S. W. Lee, S. S. Huang, H. C. Hsu, C. W. Nieh, W. C. Tsai, C. P. Lo, C. H. Lai, P. Y. Tsai, M. Y. Wang, C. M. Wu, and M. D. Lei, “C Redistribution during Ni Silicide Formation on Si1−yCy Epitaxial Layers,” J. Electrochem. Soc. 157, H297-H300 (2010).
4.13 V. Machkaoutsan, P. Verheyen, M. Bauer, Y. Zhang, S. Koelling, A. Franquet, K. Vanormelingen, R. Loo, C.S. Kim, A. Lauwers, N. Horiguchi, C. Kerner, T. Hoffmann, E. Granneman, W. Vandervorst, P. Absil, and S.G. Thomas, “Improved Thermal Stability of Ni-Silicides on Si:C Epitaxial Layers,” Microelectron. Eng. 84, 2542-2546 (2007).
4.14 F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan, “Thermal Stability Study of NiSi and NiSi2 Thin Films,” Microelectron. Eng. 71, 104-111 (2004).
4.15 R. T. P. Lee, L. T. Yang, T. Y. Liow, K. M. Tan, A. E. J. Lim, K. W. Ang, D. M. Y. Lai, K. M. Hoe, G. Q. Lo, G. S. Samudra, D. Z. Chi, and Y. C. Yeo, “Nickel-Silicide: Carbon Contact Technology for N-Channel MOSFETs with Silicon–Carbon Source/Drain,” IEEE Electron. Dev. Lett. 29 89-92 (2008).
6.1 A. Lauwers, A. Steegen, M. d. Potter, R. Lindsay, A. Satta, H. Bender, and K. Maex, “Materials Aspects, Electrical Performance, and Scalability of Ni Silicide towards Sub-0.13 μm Technologies,” J. Vac. Sci. Technol. B, 19, 2026-2037 (2001).
6.2 J. F. Liu, J. Y. Feng, and J. Zhu, “Comparison of the Thermal Stability of NiSi Films in Ni/Pt/(111)Si and Ni/Pt/(100)Si Systems,” J. Appl. Phys. 90, 745-749 (2001).
6.3 Z. Zhang, S. L. Zhang, B. Yang, Y. Zhu, S. M. Rossnagel, S. Gaudet, A. J. Kellock, J. Jordan-Sweet , and C. Lavoie, “Morphological Stability and Specific Resistivity of Sub-10 nm Silicide Films of Ni1−xPtx on Si Substrate,” Appl. Phys. Lett. 96, 071915 (2010).
6.4 J. B. Lee, S. Y. Jeong, B. J. Park, C. J. Choi, K. Hongd, S. J. Whang, and T. Y. Seong, “Improved Electrical and Thermal Properties of Nickel Silicides by Using a NiCo Interlayer,” Superlattices and Microstructures, 47, 259-265 (2010).
6.5 A. T. Y. Koh, R. T. P. Lee, A. E. J. Lim, D. M. Y. Lai, D. Z. Chi, K. M. Hoe, N. Balasubramanian, G. S. Samudra, and Y. C. Yeo, “Nickel-Aluminum Alloy Silicides with High Aluminum Content for Contact Resistance Reduction and Integration in n-Channel Field-Effect Transistors,” J. Electrochem. Soc. 155, H151-H155 (2008).
6.6 M. Sinha, E. F. Chor, and Y. C. Yeo, “Tuning the Schottky Barrier Height of Nickel Silicide on p-Silicon by Aluminum Segregation,” Appl. Phys. Lett., 92, 222114 (2008).
6.7 S. L. Chiu, Y. C. Chu, C. J. Tsai, and H. Y. Lee, “Effects of Ti Interlayer on Ni/Si Reaction Systems J. Electrochem. Soc. 151, G452-G455 (2004).
6.8 Y. Setiawan, P. S. Lee, C. W. Tan, and K. L. Pey, “Effect of Ti Alloying in Nickel Silicide Formation,” Thin Solid Films, 504, 153-156 (2006).
6.9 Y. Y. Zhang, S. Y. Jung, J. Oh, H. S. Shin, S. K. Oh, J. S. Wang, P. Majhi, R. Jammy, and H. D. Lee, “Influence of Incorporating Rare Earth Metals on the Schottky Barrier Height of Ni Silicide,” Jpn. J. Appl. Phys. 49, 055701 (2010).
6.10 W. Huang, Y. L. Min, G. P. Ru, Y. L. Jiang, X. P. Qu, and B. Z. Li, “Effect of Erbium Interlayer on Nickel Silicide Formation on Si (100),” Appl. Surf. Sci. 254, 2120 (2008).
6.11 D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of Thermal Stability of NiSi Films on (100)Si and (111)Si by Pt Addition,” Appl. Phys. Lett. 75, 1736-1738 (1999).
6.12 J. Y. Duboz, P. A. Badoz, F. A. d'Avitaya, and J. A. Chroboczek, “Electronic Transport Properties of Epitaxial Erbium Silicide/Silicon Heterostructures,” Appl. Phys. Lett. 55 84-86 (1989).
6.13 N. Reckinger, X. Tang, V. Bayot, D. A. Yarekha, E. Dubois, S. Godey, X. Wallart, G. Larrieu, A. Łaszcz, J. Ratajczak, P. J. Jacques, and J.-P. Raskin, ” Schottky Barrier Lowering with the Formation of Crystalline Er Silicide on n-Si upon Thermal Annealing,” Appl. Phys. Lett. 94, 191913 (2009).
6.14 W. Huang, Y. L. Min, G. P. Ru, Y. L. Jiang, X. P. Qu, and B. Z. Li, “Effect of Erbium Interlayer on Nickel Silicide Frmation on Si(100),” Appl. Surf. Sci. 254, 2120-2123 (2008).
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2011-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明