博碩士論文 983209010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.227.97.219
姓名 黃茂嘉(Mao-chia Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 奈米氧化鋅結構之電化學研製及其在發光二極體之應用
(Nanostructured ZnO prepared by electrochemical process and its application to light emitting diodes)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究
★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質
★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)
★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性
★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究★ 銅鎳合金微結構之微電鍍研究
★ 以微電鍍法製備三維銅錫介金屬化合物微結構★ 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文採用定電位電鍍法,在純銅(99.9%)基板上分別析鍍具(002)優選方位之n-型摻錫氧化鋅奈米柱結構、p-型氧化亞銅、硫氰化亞銅等薄膜,或依序在銅基材上先電鍍一層氧化鋅緩衝層後,接著鍍上n-型摻錫氧化鋅奈米柱結構,然後是p-型氧化亞銅、硫氰化亞銅等薄膜,以製作n-型摻錫氧化鋅奈米柱結構與兩種不同p-型薄膜之Cu/ZnO/Sn-doped ZnO/Cu2O 或Cu/ZnO/Sn-doped ZnO/CuSCN異質接面,探討其作為發光二極體之可行性。研究之重點在於: 探討改變實驗參數對n-型摻錫氧化鋅奈米產物之形貌、結構與特性的影響。至於p-型氧化亞銅或硫氰化亞銅等奈米薄膜則大致依照文獻方法製備。
定電位電鍍所得n-型摻錫氧化鋅奈米柱產物,經場發射掃描式電子顯微鏡(FE-SEM)結果顯示:固定氯化鋅濃度在1.96 mM、氯化錫濃度在0.04 mM、雙氧水濃度在2.45 mM時,若電位控制在 -0.20 V 與 - 0.50 V時,得到長方體奈米柱,電位在-0.90到-1.40 V得到含六方晶體奈米柱之薄膜。於 - 1.25 V析鍍出之六方晶奈米柱之平均柱徑約為120 nm。隨著溶液中雙氧水濃度增高至8.0 mM,奈米柱之柱徑增大至220 nm。由低掠角X光繞射分析(GIXRD)得知: 摻錫之氧化鋅奈米柱,以(002)為主峰,其峰值強度比純氧化鋅低且寬,顯示氧化鋅在摻雜錫後結晶細化;由螢光光譜分析(PL)結果顯示: 摻雜錫氧化鋅與純氧化鋅奈米柱相比,其能隙有紅移現象;經X光光電子能譜儀(XPS)分析得知: 摻錫氧化鋅奈米柱之化學狀態含有Zn-O的鍵結(鍵結能為1021.9 eV)和Sn-O的鍵結(486.7 eV),顯示摻雜之錫離子為+ 4價,錫摻雜濃度為2 at%。由XPS縱深分析結果得知,本電鍍法所得摻錫氧化鋅之厚度隨著溶液中雙氧水濃度由2.45 mM增至8.00 mM,由150 nm增至250 nm。
依據文獻在銅基材表面電鍍p型氧化亞銅薄膜之結果顯示: 在35℃於含CuSO4之鹼性溶液中,以-0.30 V電鍍20分鐘,獲得具有(111)優選方向之薄膜,膜厚約4.5μm,電阻率在1.35 Ω-cm。在含硫氰化物之若鹼性硫酸銅溶液於-0.90 V電鍍可獲得p-型硫氰酸亞銅薄膜,由EDX及UPS結果得知,此薄膜具有p型半導體特性。
實驗所得之Cu/ZnO/Sn-doped ZnO/Cu2O 和Cu/ZnO/Sn-doped ZnO/CuSCN異質接面分別進行發光二極體的電流-電壓測試。結果Cu/ZnO/Sn-doped ZnO/Cu2O系統體有較大的漏電流出現,推測氧化亞銅與氧化鋅介面間缺陷較多所致。Cu/ZnO/Sn-doped ZnO/CuSCN系統之測試,顯示具有良好的二極體特性,當電壓達到8.00 V,電流密度可達致3.5 mA/cm2。
摘要(英) The 2 at.% Sn-doped ZnO nanorods with (002) preferred orientation were electrodeposited on a copper substrate (purity at 99.9%) in the present work. Influence of the H2O2 concentrations and deposition voltage on the microstructure and optical properties of the oxide film was of interest. Besides, we observed the influence of the doping of Sn4+ on the ZnO nanorods. At last, we fabricated the LED which used ZnO and ZnO:Sn nanorods as n-type layer.
In this study, the Sn doped ZnO nanowires were successfully fabricated by electrodeposition and do not require any additional annealing process. According to the result, the hydrogen peroxide concentration is fixed at 2.45 mM, the change in voltage from the -0.2 ~ -1.40 V, the scanning electron microscope (SEM) shows that the surface structure consists of tetragonal nanorods into a polycrystalline thin film, and-1.25V results for the hexagonal nanorods, the average column diameter of about 120 nm, but not all the nanorods grow along the c axis, by changing the concentration of hydrogen peroxide that, when the hydrogen peroxide concentration of 8.00 mM of the nanorods is the best, column diameter of about 220 nm. By the grazing angle X-ray diffraction analyzer (GIXRD) results that, compared to pure zinc oxide nanorods, the (002) peak decreased and broadened by doping 2 at.% Sn, reducing the crystalline. The Sn-doped ZnO film displays the energy band gap a little red-shift as compared to pure ZnO film by photoluminescence results. the X-ray photoelectron spectroscopy (XPS) analysis of the Zn-O bonding (binding energy of 1021.9 eV), Sn-O bond was 486.7 eV, that the number of tin valence 4 +, and by the composition analysis of zinc and oxygen ratio of about 1:1, doped tin about 2 at%. By the etch-depth analysis that, with the hydrogen peroxide concentration from 2.45 mM to 8.00 mM, 150 nm film thickness increased by 250 nm. By cathodic electrochemical method on 99.9% pure copper substrate surface to growth of p-type cuprous oxide film, the experimental results showed that when the deposition temperature is 35 ℃, the film has a high degree of preferred orientation (111), and the film thickness of about 4.5 μm, resistivity of about 1.35 Ω-cm. The cuprous thiocyanate films by electrodeposition of -0.90 V, this film has a p-type semiconductor characteristic by ultraviolet photoelectron spectroscopy (UPS) and energy dispersive x-ray analysis (EDX) analysis.
According to the I-V result, the Cu2O/ZnO-based diodes with large leakage current density, it is difficult to speculate oxide combined with oxides, resulting in interface voids, defects making poor diode characteristics. The ZnO-based/CuSCN diodes with small leakage current density and all have good diode characteristics, because oxides and organic compounds easier to combine. If we as a buffer layer of ZnO, the formation of ZnO / Sn-doped ZnO / CuSCN of the heterojunction, we can see the whole of the current density increased, and when the voltage reaches 8.00 V, the current density to achieve 3.5 mA / cm2.
關鍵字(中) ★ 陰極電鍍
★ 氧化鋅
★ 錫
★ 奈米柱
★ 銅
★ 氯化鋅
★ 雙氧水
★ 氧化亞銅
★ 發光二極體
關鍵字(英) ★ cathodic electrodeposition
★ zinc oxide
★ tin
★ nanorods
★ copper
★ zinc chloride
★ light-emitting diode
★ cuprous oxide
★ hydrogen peroxide
論文目次 摘要 i
Abstract iii
致謝 vi
表目錄 xiv
圖目錄 xv
第一章 前言 1
1-1研究背景 1
1-2白光發光二極體簡介 1
1-3研究動機 2
1-4 研究目標 4
第二章 理論基礎與文獻回顧 5
2-1 氧化鋅晶體結構與應用 5
2-2 氧化鋅摻雜金屬離子 5
2-2-1 簡介 6
2-2-2 氧化鋅摻雜錫離子文獻回顧 6
2-3 氧化亞銅薄膜 9
2-4 硫氰酸亞銅薄膜 10
2-5 電化學陰極電鍍之原理與機制簡介[38-40,42 ,74-78] 10
2-5-1 電化學技術簡介 10
2-5-2電化學電鍍實驗方法 11
2-5-3 本研究運用之電化學方法簡介 12
2-6 電化學沉積氧化鋅結構之相關研究 12
2-6-1 氧化鋅之前驅物反應機制 12
2-6-2操作溫度對於氧化鋅成長之影響 14
2-7 電化學法製備以氧化鋅為基底之發光二極體文獻回顧 14
第三章 研究方法 16
3-1 實驗規劃 16
3-2 實驗試片前處理及電解液配製 16
3-2-1 試片準備 16
3-2-2 純氧化鋅電鍍液準備 16
3-2-3 氧化鋅錫電鍍液準備 17
3-2-4 氧化亞銅電鍍液準備 17
3-2-5 硫氰酸亞銅電鍍液準備 18
3-3 實驗參數 18
3-3-1 改變純氧化鋅電鍍液溫度 18
3-3-2改變純氧化鋅電鍍時間 18
3-3-3改變不同沉積氧化鋅錫之電位 19
3-3-4改變氧化鋅錫之雙氧水濃度 19
3-4 氧化鋅系發光二極體元件製備 19
3-5實驗裝置、藥品、儀器 19
3-5-1實驗裝置 20
3-5-2三極式電化學系統儀器 20
3-5-3實驗藥品、基材 20
3-6 電鍍液之材料分析 20
3-6-1 溶液導電度分析 20
3-6-2 pH值分析 21
3-7 氧化鋅、氧化鋅錫、氧化亞銅之材料分析 21
3-7-1晶體結構分析 (Grazing Incident X-ray Diffraction) 21
3-7-2 顯微結構觀察 (Field-Emission Scanning Electron Microscope) 21
3-7-3 奈米柱螢光光譜分析 (Photoluminescence) 21
3-7-4 試片表面光吸收率分析 (Absorption Spectroscopy) 22
3-7-5 片電阻分析 (Sheet Resistance) 22
3-7-6化學元素鍵結能分析 (X-ray Photoelectron Spectroscopy) 22
3-7-7 紫外光光電子能譜儀 (Ultraviolet Photoelectron Spectroscopy) 23
3-7-8 發光二極體特性量測分析 (I-V curve) 23
四、實驗結果 24
4-1 純氧化鋅奈米柱 24
4-1-1 實驗前驅溶液pH值與導電度量測 24
4-1-2 沉積溫度對於純氧化鋅奈米柱形貌影響 24
4-1-3 沉積時間對於純氧化鋅奈米柱形貌影響 25
4-2 2 at.% 錫離子摻雜氧化鋅奈米結構探討 26
4-2-1 前驅溶液pH值與導電度 26
4-2-2 電位對表面形貌之影響 26
4-2-3 雙氧水濃度對於溶液之pH值與導電度之影響 28
4-2-4 雙氧水濃度對表面形貌之影響 29
4-2-5 螢光光譜分析 30
4-2-6 紫外光光電子能譜儀分析 31
4-2-7 不同雙氧水濃度之縱深分析 31
4-3 p-type氧化亞銅 32
4-3-1 前驅溶液pH值與導電度 32
4-3-2 沉積溫度對於氧化亞銅薄膜成長影響 33
4-3-3氧化亞銅薄膜光學性質 35
4-4 p-type 硫氰酸亞銅 35
4-4-1 前驅溶液pH值與導電度 35
4-4-2 不同電位下沉積之硫氰酸亞銅薄膜 36
4-4-3硫氰酸亞銅薄膜光學性質分析 37
4-5 半導體特性量測 37
4-5-1 單層半導體特性 38
4-5-2 p-n junctions 39
五、實驗討論 41
5-1 純氧化鋅討論 41
5-1-1 電化學沉積氧化鋅 41
5-1-2 沉積溫度對於氧化鋅表面形貌探討 41
5-1-3 沉積溫度對於氧化鋅結晶性質探討 42
5-1-4 光電子能譜儀分析 42
5-2 錫摻雜氧化鋅討論 43
5-2-1 電化學沉積錫離子摻雜氧化鋅 43
5-2-2 不同電位沉積錫離子摻雜氧化鋅奈米結構 43
5-2-3不同雙氧水濃度下沉積錫離子摻雜氧化鋅奈米柱 45
5-2-4 XPS分析 47
5-3 氧化亞銅 47
5-3-1 前驅溶液探討 47
5-3-2 溫度對於氧化亞銅結晶結構之影響 48
5-4 硫氰酸亞銅 48
5-4-1 電化學沉積曲線探討 48
5-4-2 半導體特性探討 48
六、結論 50
七、未來展望 52
八、參考文獻 53
參考文獻 [1] 【LEDplux】高品質LED照明 - LED 和傳統燈泡的比較, http://www.ledplux.com/led-knowledge_03.htm
[2] 節能減碳愛地球 傳統燈泡將禁售, http://www.youth.com.tw/db/epaper/es004002/h990224-b.htm
[3] 林顯光,工研院材料所,奈米科技與顯示器產業 講義
[4] 發光二極體簡介, http://ledhome.myweb.hinet.net/FINDLED.htm
[5] 維基百科, 發光二極體
[6] 白光LED封裝技術, http://www.ceecs.ntust.edu.tw/front/bin/ptlist,129.phtml
[7] 陳錫銘, 奇力光電科技, LED技術發展與趨勢
[8] http://money.chinatimes.com/news/news-content.aspx?id=20110307000072&cid=1211
[9] 施柏均,台証證劵,發光二極體產業─日亞化學專利授權與合作分析
[10] 吳姿瑩、謝艾莉,工商時報, 藍寶石基板缺很大
[11] J. A. M. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan and R. Noufi, Prog. Photovolt: Res. Appl., 12 (2004) 39–45.
[12] Yakup Hames, Zu‥hal Alpaslan, Arif Ko semen, Sait Eren San, Yusuf Yerli, Solar Energy 84 (2010) 426–431.
[13] M H Koch, P Y Timbrel1 and R N Lamb, Semicond. Sci. Technoi. 10 (1995) 1523-1527.
[14] H. Aguraa, A. Suzukia, T. Matsushitaa, T. Aokia, and M. Okudab, Thin Solid Films, 445 (2003) 263–267.
[15] Z. Liu, Y. Liu, H. Yang, Y. Yang, G. Shen, and R. Yu,Electroanalysis 17 (2005) 1065-1070.
[16] Arundhati Banerjee, T.R. Ramamoha, M.J. Patni, Materials Research Bulleton, 36 (2001) 1259-1267.
[17] M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films, (1997), 306, 78-85.
[18] Y. Ogawa, S. Fujihara, Phys. Stat. Sol., 202, (2005), (9), 1825-1828.
[19] R. Konenkamp, R. C. Word, and M. Godinez , NANO LETTERS 2005 Vol. 5, No.10
[20] Hui Sun, Qi-Feng Zhang and Jin-LeiWu, Nanotechnology, 17, (2006), 2271–2274.
[21] Honghui Guo, Jianzhang Zhou, Zhonghua Lin, Electrochemistry Communications, 10, (2008), 146–150
[22] Qiaobao Zhang, Honghui Guo, Zengfang Feng, Electrochimica Acta, 55, (2010), 4889–4894
[23] F. Fang, A.M.C. Ng, X.Y. Chen, A.B. Djurisi c, Y.C. Zhong, K.S. Wong, P.W.K. Fong, H.F. Lui, C. Surya, W.K. Chan, Materials Chemistry and Physics, 125, (2011), 813–817
[24] Dong Chan Kim, Won Suk Han, Bo Hyun Kong, Hyung Koun Cho and Chang Hee Hong, Physica B, 401–402, (2007), 386–390
[25] Dae-Kue Hwang, Soon-Hyung Kang, Jae-Hong Lim, Eun-Jeong Yang, Jin-Yong Oh, Jin-Ho Yang, and Seong-Ju Park, Appl. Phys. Lett., (2005), 86, 222101
[26] L. G. Ren, D. C. Ren B.Qiong, Electrochemistry Communications, 9, (2007), 863–868.
[27] F. J. Sheini, I.S. Mull, Dilip S. Joag, Mahendra A. More, Thin Solid Films, 517 (2009) 6605–6611.
[28] 羅惟隆,「水蒸氣及銅膜對 Ge-GeOx核殼奈米線及Si1-XGeXO奈米線生長之影響」,國立成功大學,碩士論文,民國96年。
[29] J.C. Lin, S.B. Jang, D.L. Lee, C.C. Chen, P.C. Yeh, T.K. Chang, J.H. Yang, J. Micromech. Microeng., 15 (2005) 2405.
[30] T.K. Chang, J.C. Lin, J.H. Yang, P.C. Yeh, D.L. Lee, S.B. Jiang, J. Micromech. Micro-eng., 17 (2007) 2336.
[31] J.C. Lin, T.K. Chang, J.H. Yang, P.C. Yeh, S.B. Jiang, APCCC14 Conference, 2006.
[32] J.C. Lin, S.B. Jiang, P.C. Yeh, S.K. Liao, T.K. Chang, J.H. Yang, Automation Confer-ence, 2005.
[33] J.H. Yang, J.C. Lin, T.K. Chang, G.Y. Lai, S.B. Jiang, J. Micromech. Microeng., 18(2008), 055023.
[34] J.C. Lin, T.K. Chang, J.H. Yang, J.H. Jeng, D.L. Lee, S.B. Jiang, J. Micromech. Micro-eng., 19, (2009), 015030.
[35] J.H. Yang, J.C. Lin, T.K. Chang, X.B. You, S.B. Jiang, J. Micromech. Microeng., 19, (2009), 025015.
[36] L. Znaidi, G. J. A. A. Soler Illia, S. Benyahia, C. Sanchez, A. V. Kanaev, Thin Solid Films, 428, (2003), 257-262.
[37] S. J. Pearton, D. P. Norton, K. Lp, Y. W. Heo, T. Steiner, J. Vac. Sci. Technol. B, 22, (3), (2004), 932-948.
[38] 李玉華,「透明導電膜及其應用」, 科儀新知,12 卷第一期,(79), 94-102.
[39] J.L. Vossen, Physics of Thin Films, 9(1977), 1-64.
[40] F Norifumi, N Tokihiro, G. Seiki, X. Jifang and I. Taichiro, Journal of Crystal Growth, 130, (1993), 269.
[41] 溫慧怡,「高長寬比氧化鋅奈米柱之生成-氫氣後處理效應研究」,國立成功大學,碩士論文,民國92年。
[42] 林志誠,「以脈衝式電流電化學沉積法」,國立成功大學,碩士論文,民國96年。
[43] 邱晉億,「低維度奈米結構氧化鋅之製備與特性量測」,南台科技大學,碩士論文,民國95年。
[44] 羅惟隆,「水蒸氣及銅膜對 Ge-GeOx核殼奈米線及Si1-XGeXO奈米線生長之影響」,國立成功大學,碩士論文,民國96年。
[45] 黃氣聖,「硒化銅銦鎵太陽能電池中透明導電摻雜鋁之氧化鋅製備及特性分析」,國立東華大學,民國96年。
[46] 游政家,葉翳民,「以電沉積法製作大面積氧化鋅薄膜與奈米柱陣列」,技術學刊,第二十四卷,第三期,民國93年
[47] 張宇能,李于豪,「低壓化學氣相沉積氧化鋅奈米線光電特性及成長機制之探討」,龍華科技大學學報,第二十二期,民國96年
[48] 張國興、林國閔和胡啟章,「電化學合成奈米結構之過渡金屬氧化物與其應用」,化工技術,第17卷,第4期,民國98年4月
[49] B. K. Choi, D. H. Chang, Y. S. Yoon, S. J. Kang, J Mater Sci: Mater Electron, 17, (2006), 1011-1015.
[50] 范凱雄,「氧化鋯鋅溶凝膠薄膜之製備及其在薄膜電晶體之應用研究」,逢甲大學,碩士論文,民國96年。
[51] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, , Journal of Crystal Growth, 274, (2005) 453–457
[52] L. Dghoughi, F. Ouachtari, M. Addou, B. Elidrissi, H. Erguig, A. Rmili, A. Bouaoud, Physica B, 405 (2010), 2277.
[53] J.H. Lee, C.-Y. Chou, Z. Bi, C.-F. Tsai, H. Wang, Nanotechnology, 20 (2009) 395704.
[54] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. -h. Jeong, B. Cheong, Y. -J. Baik, and W. M. Kim, Thin Solid Films, 515, (2006), 1364–1369.
[55] M.A. Lucio-Lopez, M.A. Luna-Arias, A. Maldonado, M. de la, L. Olvera, D.R. Acosta, Sol. Energ. Mat. Sol. Cells, 90, (2006), 733.
[56] S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Physica E, 35, (2006), 131.
[57] A. Bougrine, A. El Hichou, M. Addou, J. Ebothé, A. Kachouane, M. Troyon, Materials Chemistry and Physics, 80, (2003), 438–445.
[58] Jin-Hong Lee, Byung-Ok Park, Thin Solid Films 426, (2003), 94–99.
[59] Chien-Yie Tsay, Hua-Chi Cheng, Yen-Ting Tung, Wei-Hsing Tuan, Chung-Kwei Lin, Thin Solid Films, 517, (2008), 1032–1036.
[60] Shalaka C. Navale, I.S. Mulla, Materials Science and Engineering C, 29, (2009), 1317–1320.
[61] Saliha Ilican, Mujdat Caglar, Yasemin Caglar, Applied Surface Science, 256, (2010), 7204–7210.
[62] Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More, Thin Solid Films, 519, (2010), 184–189.
[63] X. Li, S. E. Asher, S. Limpijumnong, B. M. Keyes, C. L. Perkins, T. M. Barnes, H. R. Moutinho, J. M. Luther, S. B. Zhang, S. H. Wei, and T. J. Coutts, Journal of Crystal Growth, 287, (2006), 94–100.
[64] V. Vaithianathan, Y. H. Lee, B. T. Lee, S. Hishita, and S. S. Kim, Journal of Crystal Growth, 287, (2006), 85–88.
[65] J. W. Kim, H. S. Kang, J. H. Kim, S. Y. Lee, J. K. Lee, and M. Nastasi, J. Appl. Phys., 100, (2006), 033701.
[66] Aihua Wang, ZhiguoZhong, ChengLu, LinxiaLv, XinchangWang, BinglinZhang, Physica B, 406, (2011), 1049–1052.
[67] R. Deng, X.T. Zhang, J. Luminescence, 128, (2008), 1442.
[68] 維基百科,二氧化錫
[69] J.B. Yadav, R.B. Patil, R.K. Puri and Vijaya Puri, Materials Science and Engineering B, 139, (2007), 69–73
[70] 黃肇瑞, 郭建麟, 王瑞琪, 劉全璞,「p-n型氧化亞銅/氧化鋅異質接面奈米線陣列的合成與性質分析」,成大研發快訊,第十四卷 第六期,民國99年。
[71] 王瑞琪,「銅系列奈米線之合成及與氧化鋅奈米異質結構之製作與功能化」,國立高雄大學化材系,行政院國家科學委員會專題研究計畫,民國96年。
[72] 維基百科,氧化亞銅
[73] 林冠宇,「電化學沉積之氧化亞銅其結晶結構與光電化學性質」,國立成功大學,碩士論文,民國94年。
[74] 鮮其振,「腐蝕與其防制機制」,全華圖書(2007)。
[75] 胡啟章,「電化學原理」,五南書局(2003)。
[76] 熊楚強,「電化學」,新文京出版(2008)。
[77] An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, William Stephen Tait, Ph. D.
[78] Principles and Prevntion of CORROSION, Second Edition, Denny A. Jones.
[79] John E. Jaffe, Tiffany C. Kaspar, Timothy C. Droubay, Tamas Varga, Mark E. Bowden, Gregory J. Exarhos, J. Phys. Chem. C, 2010, 114, 9111–9117.
[80] 武衛兵, 靳正國, 華鎮, 邱繼軍, 矽酸鹽學報, Vol. 32, NO.9
[81] Levy-Clement, C.; Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G. AdV. Mater., 2005, 17, 1512.
[82] F. Fang, A.M.C. Ng, X.Y. Chen, A.B. Djuriˇsi ´c, Y.C. Zhong, K.S. Wong, P.W.K. Fong, H.F. Lui, C. Surya, W.K. Chan, Materials Chemistry and Physics, 125, (2011), 813–817.
[83] N. AitAhmed,G. Fortasb,H.Hammache, S. Sam, A. Keffous, A. Manseri, L. Guerbous, N. Gabouze, Applied Surface Science, 256, (2010), 7442–7445.
[84] D. Briggs, M.P. Seah, John WILLEY & SONS. Vol. 1, second edition 1993.
[85] H. McMurdie, M. Morris, E. Evans, B. Paretzkin, W. Wong-Ng, L. Ettlinger., Powder Diffr., 1, (1986), 76.
[86] Tetsuya Tateishi, Yoshimasa Ito, Yoshimitsu Okazaki, Materials Transactions, JIM, Vol 38, NO.1, 1997, 78-84.
[87] AitAhmed,G. Fortasb,H.Hammachea, S. Sam,A. Keffous,A. Manseri, L. Guerbous,N. Gabouze, Applied Surface Science, 256, (2010), 7442–7445.
[88] Aihua Wang, Zhiguo Zhong, Cheng Lu, Linxia Lv, Xinchang Wang, Bing lin Zhang, Physica B, 406, (2011), 1049–1052.
[89] F. Fang, A.M.C. Ng, X.Y. Chen, A.B. Djuriˇsi ´c, Y.C. Zhong, K.S. Wong, P.W.K. Fong, H.F. Lui, C. Surya, W.K. Chan, Materials Chemistry and Physics, 125, (2011), 813–817.
[90] Craig L. Perkins, Se-Hee Lee, Xiaonan Li, Sally E. Asher, and Timothy J. Coutts, Journal Of Applied Physics, 97, (2005), 034907.
[91] Taeyoung Kim, Michiko Yoshitake, Shinjiro Yagyu, Slavomir Nemsak,Takahiro Nagata and Toyohiro Chikyow, Surf. Interface Anal. 42, (2010), 1528–1531.
[92] G. Haemer, J.J. Verbist, S. Maroie, Applications of Surface Science, 17, (1984), 463-476.
[93] Jung Joon Yoo, Jin Yu, Jae Yong Song, Yeonjin Yi, Carbon, 49, (2011), 2659-2664.
[94] D. Paul Joseph, T. Premkumar David, S. Philip Raja, C. Venkateswaran, Materials Characterization, 59, (2008), 1137-1139.
[95] P. B. Ahirrao, S. R. Gosavi, D. R. Patil, M. S. Shinde, R. S. Patil, Archives of Applied Science Research, 3, (2011), (2), 288-291.
[96] Y L Liu, Y C Liu, R Mu, H Yang, C L Shao, J Y Zhang, YMLu, D Z Shen, XWFan, Semicond. Sci. Technol., 20, (2005), 44–49.
[97] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of Xray Photoelectron Spectroscopy, Perkin Elmer Physical Electronics, Division, USA, 1992.
[98] Ming Yang, Jun-Jie Zhu, Jian-Jun Li, Materials Letters, 59, (2005), 842– 845.
[99] J.A. Franklin, Atlas of electrochemical equilibria by Marcel Pourbaix, 1974.
[100] K.C.Park, D.Y. Ma, K.H. Kim, Thin Solid Films, 305, (1997), 201.
指導教授 林景崎(Jin-chie Lin) 審核日期 2011-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明